An Adaptive Neuro-Fuzzy System With Integrated Feature Selection and Rule Extraction for High-Dimensional Classification Problems

模糊规则 神经模糊 计算机科学 模糊逻辑 人工智能 数据挖掘 特征选择 背景(考古学) 模糊分类 去模糊化 机器学习 模糊控制系统 模式识别(心理学) 模糊数 模糊集 古生物学 生物
作者
Guangdong Xue,Qin Chang,Jian Wang,Kai Zhang,Nikhil R. Pal
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:31 (7): 2167-2181 被引量:76
标识
DOI:10.1109/tfuzz.2022.3220950
摘要

A major limitation of fuzzy or neuro-fuzzy systems is their failure to deal with high-dimensional datasets. This happens primarily due to the use of T-norm, particularly, product or minimum (or a softer version of it). Thus, there are hardly any work dealing with datasets having features more than hundred or so. Here, we propose a neuro-fuzzy framework that can handle datasets with even more than 7000 features! In this context, we propose an adaptive softmin (Ada-softmin) which effectively overcomes the drawbacks of “numeric underflow” and “fake minimum” that arise for existing fuzzy systems while dealing with high-dimensional problems. We call it an adaptive Takagi–Sugeno–Kang (AdaTSK) fuzzy system. We then equip the AdaTSK system to perform feature selection and rule extraction in an integrated manner. In this context, a novel gate function is introduced and embedded only in the consequent parts, which can determine the useful features and rules, in two successive phases of learning. Unlike conventional fuzzy rule bases, we design an enhanced fuzzy rule base, which maintains adequate rules but does not grow the number of rules exponentially with features that typically happens for fuzzy neural networks. The integrated feature selection and rule extraction AdaTSK (FSRE-AdaTSK) system consists of three sequential phases: 1) feature selection; 2) rule extraction; and 3) fine tuning. The effectiveness of the FSRE-AdaTSK is demonstrated on 19 datasets of which five are in more than 2000 dimension including two with more than 7000 features. This may be the first attempt to develop fuzzy rule-based classifiers that can directly deal with more than 7000 features without requiring separate selection of features or any other dimensionality reduction method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无私的以亦完成签到 ,获得积分10
2秒前
3秒前
111完成签到,获得积分10
5秒前
5秒前
Mumu发布了新的文献求助10
5秒前
6秒前
52705发布了新的文献求助10
7秒前
传奇3应助46464号采纳,获得10
7秒前
高高完成签到,获得积分10
8秒前
袁宁蔓完成签到,获得积分10
8秒前
lcc发布了新的文献求助10
8秒前
9秒前
10秒前
Singularity应助李麟采纳,获得10
11秒前
圆圈应助李麟采纳,获得10
11秒前
13秒前
Fjj发布了新的文献求助10
14秒前
15秒前
17秒前
隐形曼青应助蒋田姣采纳,获得10
17秒前
小松松完成签到,获得积分10
17秒前
17秒前
18秒前
袁宁蔓发布了新的文献求助10
18秒前
19秒前
烟花应助辰星采纳,获得10
20秒前
21秒前
46464号发布了新的文献求助10
21秒前
sjsuA完成签到,获得积分10
22秒前
xny完成签到,获得积分10
22秒前
22秒前
23秒前
24秒前
25秒前
廖骏完成签到,获得积分10
25秒前
25秒前
白华苍松发布了新的文献求助20
26秒前
ghostR发布了新的文献求助100
27秒前
hayk发布了新的文献求助10
27秒前
27秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141929
求助须知:如何正确求助?哪些是违规求助? 2792912
关于积分的说明 7804490
捐赠科研通 2449236
什么是DOI,文献DOI怎么找? 1303108
科研通“疑难数据库(出版商)”最低求助积分说明 626771
版权声明 601291