An Adaptive Neuro-Fuzzy System With Integrated Feature Selection and Rule Extraction for High-Dimensional Classification Problems

模糊规则 神经模糊 计算机科学 模糊逻辑 人工智能 数据挖掘 特征选择 背景(考古学) 模糊分类 去模糊化 机器学习 模糊控制系统 模式识别(心理学) 模糊数 模糊集 古生物学 生物
作者
Guangdong Xue,Qin Chang,Jian Wang,Kai Zhang,Nikhil R. Pal
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:31 (7): 2167-2181 被引量:76
标识
DOI:10.1109/tfuzz.2022.3220950
摘要

A major limitation of fuzzy or neuro-fuzzy systems is their failure to deal with high-dimensional datasets. This happens primarily due to the use of T-norm, particularly, product or minimum (or a softer version of it). Thus, there are hardly any work dealing with datasets having features more than hundred or so. Here, we propose a neuro-fuzzy framework that can handle datasets with even more than 7000 features! In this context, we propose an adaptive softmin (Ada-softmin) which effectively overcomes the drawbacks of “numeric underflow” and “fake minimum” that arise for existing fuzzy systems while dealing with high-dimensional problems. We call it an adaptive Takagi–Sugeno–Kang (AdaTSK) fuzzy system. We then equip the AdaTSK system to perform feature selection and rule extraction in an integrated manner. In this context, a novel gate function is introduced and embedded only in the consequent parts, which can determine the useful features and rules, in two successive phases of learning. Unlike conventional fuzzy rule bases, we design an enhanced fuzzy rule base, which maintains adequate rules but does not grow the number of rules exponentially with features that typically happens for fuzzy neural networks. The integrated feature selection and rule extraction AdaTSK (FSRE-AdaTSK) system consists of three sequential phases: 1) feature selection; 2) rule extraction; and 3) fine tuning. The effectiveness of the FSRE-AdaTSK is demonstrated on 19 datasets of which five are in more than 2000 dimension including two with more than 7000 features. This may be the first attempt to develop fuzzy rule-based classifiers that can directly deal with more than 7000 features without requiring separate selection of features or any other dimensionality reduction method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zzz发布了新的文献求助10
1秒前
limuzi827完成签到 ,获得积分10
1秒前
桐桐应助曹小仙男采纳,获得10
1秒前
1秒前
细腻海蓝发布了新的文献求助10
2秒前
2秒前
cindy发布了新的文献求助10
4秒前
bfl完成签到,获得积分10
4秒前
4秒前
Karouline完成签到,获得积分10
5秒前
大力冰绿应助111111采纳,获得20
5秒前
lightshark发布了新的文献求助10
6秒前
sunny完成签到,获得积分10
6秒前
6秒前
李春晓完成签到,获得积分10
7秒前
semigreen完成签到 ,获得积分10
7秒前
daisy_chen完成签到,获得积分10
9秒前
华仔应助cindy采纳,获得10
9秒前
9秒前
10秒前
10秒前
欣__完成签到,获得积分10
10秒前
echo发布了新的文献求助10
11秒前
orixero应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
深情安青应助科研通管家采纳,获得10
11秒前
健壮可冥完成签到 ,获得积分10
11秒前
华仔应助科研通管家采纳,获得10
11秒前
77应助科研通管家采纳,获得10
11秒前
12秒前
丘比特应助科研通管家采纳,获得10
12秒前
无花果应助科研通管家采纳,获得10
12秒前
aliensas发布了新的文献求助10
12秒前
JamesPei应助科研通管家采纳,获得10
12秒前
共享精神应助科研通管家采纳,获得10
12秒前
所所应助科研通管家采纳,获得10
12秒前
燕儿应助科研通管家采纳,获得10
12秒前
无花果应助科研通管家采纳,获得10
12秒前
小菜花完成签到,获得积分10
12秒前
花开的石头完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5283823
求助须知:如何正确求助?哪些是违规求助? 4437576
关于积分的说明 13813988
捐赠科研通 4318377
什么是DOI,文献DOI怎么找? 2370395
邀请新用户注册赠送积分活动 1365780
关于科研通互助平台的介绍 1329225