An Adaptive Neuro-Fuzzy System With Integrated Feature Selection and Rule Extraction for High-Dimensional Classification Problems

模糊规则 神经模糊 计算机科学 模糊逻辑 人工智能 数据挖掘 特征选择 背景(考古学) 模糊分类 去模糊化 机器学习 模糊控制系统 模式识别(心理学) 模糊数 模糊集 古生物学 生物
作者
Guangdong Xue,Qin Chang,Jian Wang,Kai Zhang,Nikhil R. Pal
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:31 (7): 2167-2181 被引量:76
标识
DOI:10.1109/tfuzz.2022.3220950
摘要

A major limitation of fuzzy or neuro-fuzzy systems is their failure to deal with high-dimensional datasets. This happens primarily due to the use of T-norm, particularly, product or minimum (or a softer version of it). Thus, there are hardly any work dealing with datasets having features more than hundred or so. Here, we propose a neuro-fuzzy framework that can handle datasets with even more than 7000 features! In this context, we propose an adaptive softmin (Ada-softmin) which effectively overcomes the drawbacks of “numeric underflow” and “fake minimum” that arise for existing fuzzy systems while dealing with high-dimensional problems. We call it an adaptive Takagi–Sugeno–Kang (AdaTSK) fuzzy system. We then equip the AdaTSK system to perform feature selection and rule extraction in an integrated manner. In this context, a novel gate function is introduced and embedded only in the consequent parts, which can determine the useful features and rules, in two successive phases of learning. Unlike conventional fuzzy rule bases, we design an enhanced fuzzy rule base, which maintains adequate rules but does not grow the number of rules exponentially with features that typically happens for fuzzy neural networks. The integrated feature selection and rule extraction AdaTSK (FSRE-AdaTSK) system consists of three sequential phases: 1) feature selection; 2) rule extraction; and 3) fine tuning. The effectiveness of the FSRE-AdaTSK is demonstrated on 19 datasets of which five are in more than 2000 dimension including two with more than 7000 features. This may be the first attempt to develop fuzzy rule-based classifiers that can directly deal with more than 7000 features without requiring separate selection of features or any other dimensionality reduction method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
xuxu完成签到 ,获得积分10
1秒前
2秒前
毛毛虫发布了新的文献求助10
2秒前
科研通AI5应助朴斓采纳,获得10
3秒前
陈彦冰完成签到,获得积分10
3秒前
tianny完成签到,获得积分10
4秒前
浪迹天涯发布了新的文献求助10
5秒前
星星发布了新的文献求助10
5秒前
李瑞瑞完成签到,获得积分10
6秒前
6秒前
8秒前
星辰大海应助jy采纳,获得10
8秒前
9秒前
我是站长才怪应助Khr1stINK采纳,获得10
9秒前
10秒前
xh完成签到,获得积分10
11秒前
para_团结完成签到,获得积分10
12秒前
怡然剑成发布了新的文献求助10
12秒前
13秒前
13秒前
ipeakkka发布了新的文献求助10
13秒前
George完成签到,获得积分10
15秒前
WDK完成签到,获得积分10
15秒前
情怀应助敏感的芷采纳,获得10
15秒前
Orange应助方勇飞采纳,获得10
16秒前
FashionBoy应助烂漫驳采纳,获得10
16秒前
17秒前
18秒前
大鱼完成签到,获得积分10
18秒前
18秒前
lu完成签到,获得积分10
19秒前
Murphy完成签到 ,获得积分10
19秒前
斯文败类应助大方嵩采纳,获得10
19秒前
CodeCraft应助科研通管家采纳,获得10
20秒前
充电宝应助科研通管家采纳,获得10
20秒前
CodeCraft应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
丘比特应助科研通管家采纳,获得30
20秒前
hh应助科研通管家采纳,获得10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824