An Adaptive Neuro-Fuzzy System With Integrated Feature Selection and Rule Extraction for High-Dimensional Classification Problems

模糊规则 神经模糊 计算机科学 模糊逻辑 人工智能 数据挖掘 特征选择 背景(考古学) 模糊分类 去模糊化 机器学习 模糊控制系统 模式识别(心理学) 模糊数 模糊集 古生物学 生物
作者
Guangdong Xue,Qin Chang,Jian Wang,Kai Zhang,Nikhil R. Pal
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:31 (7): 2167-2181 被引量:76
标识
DOI:10.1109/tfuzz.2022.3220950
摘要

A major limitation of fuzzy or neuro-fuzzy systems is their failure to deal with high-dimensional datasets. This happens primarily due to the use of T-norm, particularly, product or minimum (or a softer version of it). Thus, there are hardly any work dealing with datasets having features more than hundred or so. Here, we propose a neuro-fuzzy framework that can handle datasets with even more than 7000 features! In this context, we propose an adaptive softmin (Ada-softmin) which effectively overcomes the drawbacks of “numeric underflow” and “fake minimum” that arise for existing fuzzy systems while dealing with high-dimensional problems. We call it an adaptive Takagi–Sugeno–Kang (AdaTSK) fuzzy system. We then equip the AdaTSK system to perform feature selection and rule extraction in an integrated manner. In this context, a novel gate function is introduced and embedded only in the consequent parts, which can determine the useful features and rules, in two successive phases of learning. Unlike conventional fuzzy rule bases, we design an enhanced fuzzy rule base, which maintains adequate rules but does not grow the number of rules exponentially with features that typically happens for fuzzy neural networks. The integrated feature selection and rule extraction AdaTSK (FSRE-AdaTSK) system consists of three sequential phases: 1) feature selection; 2) rule extraction; and 3) fine tuning. The effectiveness of the FSRE-AdaTSK is demonstrated on 19 datasets of which five are in more than 2000 dimension including two with more than 7000 features. This may be the first attempt to develop fuzzy rule-based classifiers that can directly deal with more than 7000 features without requiring separate selection of features or any other dimensionality reduction method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坚强的依秋完成签到,获得积分10
刚刚
香蕉觅云应助朱问安采纳,获得10
刚刚
嘿小黑应助hongyan采纳,获得20
1秒前
小王发布了新的文献求助10
1秒前
大力山槐完成签到,获得积分10
3秒前
小美完成签到 ,获得积分10
3秒前
isvv完成签到,获得积分10
4秒前
7秒前
无花果应助科研通管家采纳,获得10
7秒前
SYLH应助科研通管家采纳,获得10
7秒前
7秒前
小蘑菇应助科研通管家采纳,获得10
7秒前
SYLH应助科研通管家采纳,获得10
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
isvv发布了新的文献求助20
7秒前
天天快乐应助小王采纳,获得10
7秒前
星辰大海应助科研通管家采纳,获得10
7秒前
Owen应助科研通管家采纳,获得10
7秒前
QUA应助科研通管家采纳,获得10
7秒前
Owen应助科研通管家采纳,获得10
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
8秒前
yznfly应助科研通管家采纳,获得30
8秒前
8秒前
8秒前
上官若男应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
8秒前
10秒前
eleven完成签到,获得积分10
11秒前
12秒前
小黑子fanfan完成签到,获得积分10
14秒前
欢呼寻冬完成签到 ,获得积分10
15秒前
LYY完成签到,获得积分10
16秒前
ericzhouxx发布了新的文献求助10
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966444
求助须知:如何正确求助?哪些是违规求助? 3511885
关于积分的说明 11160462
捐赠科研通 3246599
什么是DOI,文献DOI怎么找? 1793425
邀请新用户注册赠送积分活动 874451
科研通“疑难数据库(出版商)”最低求助积分说明 804388