Biologics for severe asthma: The real-world evidence, effectiveness of switching, and prediction factors for the efficacy

杜皮鲁玛 奥马佐单抗 医学 美波利祖马布 苯拉唑马布 哮喘 临床试验 中止 重症监护医学 生物标志物 特应性皮炎 随机对照试验 代理终结点 免疫学 嗜酸性粒细胞 内科学 免疫球蛋白E 化学 生物化学 抗体
作者
Hiroyuki Nagase,Maho Suzukawa,Keiji Oishi,Kazuto Matsunaga
出处
期刊:Allergology International [Elsevier BV]
卷期号:72 (1): 11-23 被引量:56
标识
DOI:10.1016/j.alit.2022.11.008
摘要

Biologics have been a key component of severe asthma treatment, and there are currently biologics available that target IgE, IL-5, IL-4/IL-13, and TSLP. Randomized controlled trials have established clinical evidence, but a significant portion of patients with severe asthma in real-life settings would have been excluded from those trials. Therefore, real-world research is necessary, and there is a growing body of information about the long-term efficacy and safety of biologics. Multiple clinical phenotypes of severe asthma exist, and it is crucial to choose patients based on their phenotypes. Blood eosinophil count is an important biomarker for anti-IL-5 therapies, and FeNO and eosinophil counts serve as prediction markers for dupilumab. Reliable markers for predicting response, however, have not yet been fully established for omalizumab. Identification of clinical or biological prediction factors is crucial for the path toward clinical remission because the current treatment goal includes clinical remission, which is defined as a realistic goal for remission off treatment. Additionally, since there are now multiple biologic options and overlaps in eligibility for biologics in clinical practice, the evidence regarding the effectiveness of switching the biologics is crucial. Investigations into the clinical trajectory following the cessation of biologics are another important issue. Recent research on omalizumab, mepolizumab, benralizumab and dupilumab's real-world effectiveness, the prediction factor for the efficacy, and the impact of switching or discontinuation will be reviewed and discussed in this review.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
认真初南发布了新的文献求助10
1秒前
2秒前
脑洞疼应助刘长银采纳,获得10
2秒前
五五乐发布了新的文献求助10
3秒前
3秒前
Darling发布了新的文献求助10
4秒前
咕咕完成签到 ,获得积分10
4秒前
科研通AI5应助滑稽剑客采纳,获得10
4秒前
科研通AI5应助滑稽剑客采纳,获得10
4秒前
科研通AI5应助滑稽剑客采纳,获得10
4秒前
七页禾完成签到,获得积分20
5秒前
7秒前
7秒前
斯文败类应助cheng zou采纳,获得10
8秒前
WIND-CUTTER发布了新的文献求助10
8秒前
韩维完成签到 ,获得积分10
9秒前
9秒前
芭乐发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
山花浪漫应助哼哼采纳,获得10
12秒前
13秒前
小周完成签到,获得积分10
13秒前
14秒前
zwy109发布了新的文献求助30
14秒前
科研通AI5应助Joshua采纳,获得10
15秒前
15秒前
qazcy发布了新的文献求助10
16秒前
畅畅完成签到 ,获得积分10
16秒前
元谷雪发布了新的文献求助10
16秒前
化雪完成签到,获得积分10
16秒前
852应助seedcode采纳,获得10
16秒前
16秒前
施白玉完成签到,获得积分10
17秒前
17秒前
17秒前
19秒前
zho应助Darling采纳,获得10
19秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
Measure Mean Linear Intercept 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3731088
求助须知:如何正确求助?哪些是违规求助? 3275541
关于积分的说明 9992592
捐赠科研通 2991161
什么是DOI,文献DOI怎么找? 1641401
邀请新用户注册赠送积分活动 779791
科研通“疑难数据库(出版商)”最低求助积分说明 748331