BikeCAP: Deep Spatial-temporal Capsule Network for Multi-step Bike Demand Prediction

计算机科学 下游(制造业) 上游(联网) 杠杆(统计) 共享单车 导线 实时计算 人工智能 运输工程 电信 工程类 大地测量学 运营管理 地理
作者
Shuxin Zhong,Wenjun Lyu,John A. Stankovic,Yu Yang
标识
DOI:10.1109/icdcs54860.2022.00085
摘要

Given the recent global development of bike-sharing systems, numerous methods have been proposed to predict their user demand. These methods work fine for single-step prediction (i.e., 10 mins) but are limited to predicting in a multi-step prediction (i.e., more than 60 mins), which is essential for applications such as bike re-balancing that requires long operation time. To address this limitation, we leverage the fact that the demand for upstream transportation, e.g., subways, can assist the future demand prediction of downstream transportation, e.g., bikes. Specifically, we design a deep spatial-temporal capsule network called BikeCAP with three components: (1) a historical capsule that learns the demand characteristics for both the upstream (i.e., subways) and downstream (i.e., bikes) transportation systems, where a pyramid convolutional layer explores the simultaneous spatial-temporal correlations; (2) a future capsule that actively captures the dynamic spatial-temporal propagation correlations from the upstream to the downstream system, in which a spatial-temporal routing technique benefits to reduce the accumulated prediction errors; (3) a 3D-deconvolution decoder that constructs future bike demand considering the similar downstream demand patterns in neighboring grids and adjacent time slots. Experimentally, we conduct comprehensive experiments on the data of 30, 000 bikes and 7 subway lines collected in Shenzhen City, China, The results show that BikeCAP outperforms several state-of-the-art methods, significantly increasing the performance by 38.6% in terms of accuracy in multi-step prediction. We also conduct ablation studies to show the significance of BikeCAP’s different designed components.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助BLUE采纳,获得10
刚刚
ding应助Lisa采纳,获得10
1秒前
1秒前
jial完成签到,获得积分10
2秒前
笑哈哈发布了新的文献求助10
2秒前
慕青应助豆豆采纳,获得10
2秒前
lym97完成签到 ,获得积分10
3秒前
张小美发布了新的文献求助10
3秒前
3秒前
舒心尔竹完成签到,获得积分10
3秒前
5秒前
阿白发布了新的文献求助10
5秒前
5秒前
6秒前
7秒前
7秒前
知了完成签到,获得积分10
7秒前
秀丽笑容发布了新的文献求助10
7秒前
taimeili完成签到,获得积分10
7秒前
王博林发布了新的文献求助10
9秒前
feiying88发布了新的文献求助10
9秒前
深情安青应助李洪晔采纳,获得10
10秒前
顺心若魔发布了新的文献求助10
10秒前
10秒前
10秒前
pdx666发布了新的文献求助10
11秒前
Lucas应助张小美采纳,获得10
11秒前
11秒前
11秒前
12秒前
12秒前
研友_GZ32mn完成签到,获得积分10
13秒前
Tsui发布了新的文献求助10
13秒前
CipherSage应助清雨采纳,获得10
13秒前
15秒前
shinble发布了新的文献求助10
15秒前
15秒前
无奈的晴发布了新的文献求助10
15秒前
无私追命发布了新的文献求助10
15秒前
单纯的问安完成签到,获得积分20
16秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992868
求助须知:如何正确求助?哪些是违规求助? 3533689
关于积分的说明 11263515
捐赠科研通 3273441
什么是DOI,文献DOI怎么找? 1806049
邀请新用户注册赠送积分活动 882931
科研通“疑难数据库(出版商)”最低求助积分说明 809629