BikeCAP: Deep Spatial-temporal Capsule Network for Multi-step Bike Demand Prediction

计算机科学 下游(制造业) 上游(联网) 杠杆(统计) 共享单车 导线 实时计算 人工智能 运输工程 电信 工程类 大地测量学 运营管理 地理
作者
Shuxin Zhong,Wenjun Lyu,John A. Stankovic,Yu Yang
标识
DOI:10.1109/icdcs54860.2022.00085
摘要

Given the recent global development of bike-sharing systems, numerous methods have been proposed to predict their user demand. These methods work fine for single-step prediction (i.e., 10 mins) but are limited to predicting in a multi-step prediction (i.e., more than 60 mins), which is essential for applications such as bike re-balancing that requires long operation time. To address this limitation, we leverage the fact that the demand for upstream transportation, e.g., subways, can assist the future demand prediction of downstream transportation, e.g., bikes. Specifically, we design a deep spatial-temporal capsule network called BikeCAP with three components: (1) a historical capsule that learns the demand characteristics for both the upstream (i.e., subways) and downstream (i.e., bikes) transportation systems, where a pyramid convolutional layer explores the simultaneous spatial-temporal correlations; (2) a future capsule that actively captures the dynamic spatial-temporal propagation correlations from the upstream to the downstream system, in which a spatial-temporal routing technique benefits to reduce the accumulated prediction errors; (3) a 3D-deconvolution decoder that constructs future bike demand considering the similar downstream demand patterns in neighboring grids and adjacent time slots. Experimentally, we conduct comprehensive experiments on the data of 30, 000 bikes and 7 subway lines collected in Shenzhen City, China, The results show that BikeCAP outperforms several state-of-the-art methods, significantly increasing the performance by 38.6% in terms of accuracy in multi-step prediction. We also conduct ablation studies to show the significance of BikeCAP’s different designed components.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
39完成签到,获得积分10
1秒前
Ricardo完成签到 ,获得积分10
1秒前
wanci应助zhangscience采纳,获得10
3秒前
3秒前
3秒前
3秒前
没有完成签到,获得积分10
4秒前
7秒前
来一起做朋友吧完成签到,获得积分20
8秒前
粥粥卷完成签到,获得积分10
9秒前
甜蜜墨镜发布了新的文献求助10
9秒前
诺亚完成签到,获得积分10
13秒前
14秒前
15秒前
19920603发布了新的文献求助30
17秒前
18秒前
19秒前
cis2014发布了新的文献求助10
19秒前
奶油泡fu完成签到 ,获得积分10
19秒前
20秒前
23秒前
27秒前
29秒前
29秒前
colin完成签到,获得积分10
31秒前
Jonathan发布了新的文献求助10
32秒前
江璃发布了新的文献求助10
32秒前
邓娅琴完成签到 ,获得积分10
33秒前
sxp1031发布了新的文献求助10
33秒前
33秒前
33秒前
34秒前
35秒前
清和发布了新的文献求助10
36秒前
38秒前
谢鱼完成签到,获得积分10
38秒前
叶艳霞完成签到,获得积分10
41秒前
weigui发布了新的文献求助10
42秒前
斯文败类应助谢鱼采纳,获得10
42秒前
万能图书馆应助LEE123采纳,获得10
42秒前
高分求助中
LNG地下式貯槽指針(JGA指-107) 1000
LNG地上式貯槽指針 (JGA指 ; 108) 1000
QMS18Ed2 | process management. 2nd ed 600
LNG as a marine fuel—Safety and Operational Guidelines - Bunkering 560
How Stories Change Us A Developmental Science of Stories from Fiction and Real Life 500
九经直音韵母研究 500
Full waveform acoustic data processing 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 免疫学 细胞生物学 电极
热门帖子
关注 科研通微信公众号,转发送积分 2934803
求助须知:如何正确求助?哪些是违规求助? 2590152
关于积分的说明 6978060
捐赠科研通 2235432
什么是DOI,文献DOI怎么找? 1187122
版权声明 589846
科研通“疑难数据库(出版商)”最低求助积分说明 581093