BikeCAP: Deep Spatial-temporal Capsule Network for Multi-step Bike Demand Prediction

计算机科学 下游(制造业) 上游(联网) 杠杆(统计) 共享单车 导线 实时计算 人工智能 运输工程 电信 工程类 大地测量学 运营管理 地理
作者
Shuxin Zhong,Wenjun Lyu,John A. Stankovic,Yu Yang
标识
DOI:10.1109/icdcs54860.2022.00085
摘要

Given the recent global development of bike-sharing systems, numerous methods have been proposed to predict their user demand. These methods work fine for single-step prediction (i.e., 10 mins) but are limited to predicting in a multi-step prediction (i.e., more than 60 mins), which is essential for applications such as bike re-balancing that requires long operation time. To address this limitation, we leverage the fact that the demand for upstream transportation, e.g., subways, can assist the future demand prediction of downstream transportation, e.g., bikes. Specifically, we design a deep spatial-temporal capsule network called BikeCAP with three components: (1) a historical capsule that learns the demand characteristics for both the upstream (i.e., subways) and downstream (i.e., bikes) transportation systems, where a pyramid convolutional layer explores the simultaneous spatial-temporal correlations; (2) a future capsule that actively captures the dynamic spatial-temporal propagation correlations from the upstream to the downstream system, in which a spatial-temporal routing technique benefits to reduce the accumulated prediction errors; (3) a 3D-deconvolution decoder that constructs future bike demand considering the similar downstream demand patterns in neighboring grids and adjacent time slots. Experimentally, we conduct comprehensive experiments on the data of 30, 000 bikes and 7 subway lines collected in Shenzhen City, China, The results show that BikeCAP outperforms several state-of-the-art methods, significantly increasing the performance by 38.6% in terms of accuracy in multi-step prediction. We also conduct ablation studies to show the significance of BikeCAP’s different designed components.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FBI汪宁完成签到,获得积分10
刚刚
高贵的以山完成签到,获得积分10
1秒前
菠萝发布了新的文献求助10
1秒前
666发布了新的文献求助10
1秒前
顾子墨发布了新的文献求助10
1秒前
2秒前
汉堡包应助tingting采纳,获得10
2秒前
2秒前
TT发布了新的文献求助10
2秒前
lhr发布了新的文献求助10
3秒前
燕烟发布了新的文献求助10
3秒前
3秒前
柳叶刀发布了新的文献求助10
3秒前
3秒前
3秒前
明理含之发布了新的文献求助10
4秒前
DrKeys完成签到,获得积分10
4秒前
Duang完成签到 ,获得积分10
4秒前
大胆绿柳发布了新的文献求助10
4秒前
顾矜应助111版采纳,获得10
4秒前
5秒前
ZYX关注了科研通微信公众号
5秒前
5秒前
5秒前
田様应助zhili采纳,获得10
5秒前
5秒前
bdsb完成签到,获得积分10
6秒前
852应助繁荣的南风采纳,获得10
7秒前
杨怡红发布了新的文献求助10
7秒前
Shixin发布了新的文献求助10
7秒前
lixiao1912完成签到,获得积分10
7秒前
观潮应助爱听歌笑寒采纳,获得10
7秒前
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
CodeCraft应助木谦采纳,获得10
9秒前
陈伟利发布了新的文献求助10
9秒前
棋士发布了新的文献求助10
9秒前
lys应助skycool采纳,获得10
9秒前
无花果应助yeezy123采纳,获得10
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Advanced Memory Technology: Functional Materials and Devices 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5692994
求助须知:如何正确求助?哪些是违规求助? 5091092
关于积分的说明 15210459
捐赠科研通 4850168
什么是DOI,文献DOI怎么找? 2601565
邀请新用户注册赠送积分活动 1553403
关于科研通互助平台的介绍 1511404