FAT-CAT—Explainability and augmentation for an AI system: A case study on AI recruitment-system adoption

问责 透明度(行为) 衡平法 决策者 人工智能 计算机科学 心理学 知识管理 管理科学 经济 政治学 计算机安全 法学
作者
ChangHyun Lee,Kyung Jin
出处
期刊:International journal of human-computer studies [Elsevier]
卷期号:171: 102976-102976 被引量:13
标识
DOI:10.1016/j.ijhcs.2022.102976
摘要

Because artificial intelligence (AI) recruitment systems exhibited discriminatory decisions in recent applications, the adoption of such systems in industry has raised doubts. As equity has been emphasized in AI decision-making frameworks, the non-explainability issue regarding the high performance of AI methods has become prominent. Therefore, scholars have focused on human–AI augmentation in which humans consider equity and AI supports the consideration. As a result, explainability is highlighted as a new capability of AI methods for an ideal decision. In this regard, this study proposes the so-called fairness, accountability, and transparency (FAT)-complexity, anxiety, and trust (CAT) model that describes the path from explainability to AI system adoption considering augmentation, assuming that the capability of the AI decision maker to explain the basis of its decision and interact with the human decision maker is crucial for AI recruitment system adoption. We found that explainability and augmentation are two key factors in AI recruitment system adoption and assessed that their importance will gradually increase as recruiters will be asked to use such AI systems more commonly. Moreover, this study conceptualized the role of an augmented relationship between humans and AI in decision-making, in which they complement each other's limitations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玉米发布了新的文献求助30
刚刚
Singularity应助皮皮采纳,获得20
刚刚
yao应助li采纳,获得10
刚刚
djw发布了新的文献求助10
2秒前
英姑应助闪闪青雪采纳,获得10
2秒前
2222发布了新的文献求助10
3秒前
xinuo发布了新的文献求助10
3秒前
李健应助尊敬飞丹采纳,获得10
3秒前
789完成签到,获得积分20
3秒前
4秒前
maox1aoxin应助那个人采纳,获得30
6秒前
789发布了新的文献求助30
6秒前
丘比特应助果ghj采纳,获得10
9秒前
完美世界应助NIHAO采纳,获得10
9秒前
星辰大海应助xinuo采纳,获得10
10秒前
Dank1ng发布了新的文献求助10
11秒前
特昂唐完成签到,获得积分10
11秒前
djw完成签到,获得积分10
11秒前
小C完成签到,获得积分10
12秒前
15秒前
Singularity应助小元采纳,获得10
15秒前
吸灵气的猫完成签到,获得积分10
16秒前
bkagyin应助Nick采纳,获得10
16秒前
18秒前
18秒前
石石夏发布了新的文献求助10
19秒前
Ava应助wk采纳,获得30
20秒前
上官若男应助gfr123采纳,获得10
20秒前
刘小刘发布了新的文献求助10
23秒前
丰知然应助789采纳,获得10
23秒前
叽叽哒哒完成签到 ,获得积分10
24秒前
24秒前
香蕉觅云应助杨哈哈采纳,获得10
27秒前
思源应助一个橡果采纳,获得10
28秒前
jimskylxk完成签到,获得积分10
28秒前
djw关注了科研通微信公众号
28秒前
灵巧白风发布了新的文献求助10
32秒前
34秒前
Lucas应助陪伴采纳,获得10
34秒前
无花果应助NanNan626采纳,获得10
36秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313855
求助须知:如何正确求助?哪些是违规求助? 2946137
关于积分的说明 8528616
捐赠科研通 2621703
什么是DOI,文献DOI怎么找? 1434035
科研通“疑难数据库(出版商)”最低求助积分说明 665112
邀请新用户注册赠送积分活动 650691