Inactivation of the PTS as a Strategy to Engineer the Production of Aromatic Metabolites in <b><i>Escherichia coli</i></b>

分解代谢抑制 PEP群易位 大肠杆菌 磷酸烯醇丙酮酸羧激酶 生物化学 诱导剂 分解代谢 代谢工程 突变体 葡萄糖转运蛋白 生物 化学 新陈代谢 基因 生物技术 胰岛素
作者
Susy Beatriz Carmona,Fabián Moreno,Francisco Bolívar,Guillermo Gosset,Adelfo Escalante
出处
期刊:Microbial physiology 卷期号:25 (2-3): 195-208 被引量:19
标识
DOI:10.1159/000380854
摘要

Laboratory and industrial cultures of <i>Escherichia coli</i> employ media containing glucose which is mainly transported and phosphorylated by the phosphotransferase system (PTS). In these strains, 50% of the phosphoenolpyruvate (PEP), which results from the catabolism of transported glucose, is used as a phosphate donor for its phosphorylation and translocation by the PTS. This characteristic of the PTS limits the production of industrial biocommodities that have PEP as a precursor. Furthermore, when <i>E. coli</i> is exposed to carbohydrate mixtures, the PTS prevents expression of catabolic and non-PTS transport genes by carbon catabolite repression and inducer exclusion. In this contribution, we discuss the main strategies developed to overcome these potentially limiting effects in production strains. These strategies include adaptive laboratory evolution selection of PTS<sup>-</sup> Glc<sup>+</sup> mutants, followed by the generation of strains that recover their ability to grow with glucose as a carbon source while allowing the simultaneous consumption of more than one carbon source. We discuss the benefits of using alternative glucose transport systems and describe the application of these strategies to <i>E. coli</i> strains with specific genetic modifications in target pathways. These efforts have resulted in significant improvements in the production of diverse biocommodities, including aromatic metabolites, biofuels and organic acids.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
化合物来完成签到,获得积分10
刚刚
dracovu完成签到,获得积分10
刚刚
ypyang完成签到,获得积分20
1秒前
sky完成签到,获得积分20
1秒前
qcf应助苹果巧蕊采纳,获得10
2秒前
3秒前
Silence完成签到,获得积分10
3秒前
Burnell完成签到,获得积分10
4秒前
愉博完成签到,获得积分0
5秒前
大个应助ypyang采纳,获得10
6秒前
7秒前
科研通AI5应助Wink14551采纳,获得10
7秒前
Sylvia完成签到,获得积分10
7秒前
jajaqy完成签到,获得积分10
9秒前
京阿尼发布了新的文献求助10
10秒前
yoyo完成签到,获得积分10
11秒前
万能图书馆应助自信寒蕾采纳,获得10
11秒前
胡桃夹子发布了新的文献求助10
13秒前
14秒前
orixero应助龙龙ff11_采纳,获得10
14秒前
甜美的瑾瑜完成签到,获得积分10
16秒前
17秒前
小二郎应助平淡的访问采纳,获得10
18秒前
Iris完成签到 ,获得积分10
19秒前
19秒前
mxh695636455完成签到,获得积分10
19秒前
pcr163应助DINGXH采纳,获得50
19秒前
zyh发布了新的文献求助10
20秒前
地老天框发布了新的文献求助10
21秒前
22秒前
22秒前
22秒前
Chen完成签到 ,获得积分10
23秒前
一样谦虚完成签到,获得积分10
24秒前
十七完成签到,获得积分20
26秒前
科研通AI5应助俭朴的猫咪采纳,获得10
28秒前
31秒前
sxy0604发布了新的文献求助10
33秒前
宋百言完成签到,获得积分10
33秒前
Spiderman完成签到,获得积分10
34秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3479631
求助须知:如何正确求助?哪些是违规求助? 3070230
关于积分的说明 9117075
捐赠科研通 2761943
什么是DOI,文献DOI怎么找? 1515594
邀请新用户注册赠送积分活动 701041
科研通“疑难数据库(出版商)”最低求助积分说明 699985