Species classification using Unmanned Aerial Vehicle (UAV)-acquired high spatial resolution imagery in a heterogeneous grassland

草原 遥感 植被(病理学) 环境科学 卫星图像 图像分辨率 草地生态系统 地理 生态学 计算机科学 人工智能 医学 生物 病理
作者
Bing Lu,Yuhong He
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:128: 73-85 被引量:197
标识
DOI:10.1016/j.isprsjprs.2017.03.011
摘要

Investigating spatio-temporal variations of species composition in grassland is an essential step in evaluating grassland health conditions, understanding the evolutionary processes of the local ecosystem, and developing grassland management strategies. Space-borne remote sensing images (e.g., MODIS, Landsat, and Quickbird) with spatial resolutions varying from less than 1 m to 500 m have been widely applied for vegetation species classification at spatial scales from community to regional levels. However, the spatial resolutions of these images are not fine enough to investigate grassland species composition, since grass species are generally small in size and highly mixed, and vegetation cover is greatly heterogeneous. Unmanned Aerial Vehicle (UAV) as an emerging remote sensing platform offers a unique ability to acquire imagery at very high spatial resolution (centimetres). Compared to satellites or airplanes, UAVs can be deployed quickly and repeatedly, and are less limited by weather conditions, facilitating advantageous temporal studies. In this study, we utilize an octocopter, on which we mounted a modified digital camera (with near-infrared (NIR), green, and blue bands), to investigate species composition in a tall grassland in Ontario, Canada. Seven flight missions were conducted during the growing season (April to December) in 2015 to detect seasonal variations, and four of them were selected in this study to investigate the spatio-temporal variations of species composition. To quantitatively compare images acquired at different times, we establish a processing flow of UAV-acquired imagery, focusing on imagery quality evaluation and radiometric correction. The corrected imagery is then applied to an object-based species classification. Maps of species distribution are subsequently used for a spatio-temporal change analysis. Results indicate that UAV-acquired imagery is an incomparable data source for studying fine-scale grassland species composition, owing to its high spatial resolution. The overall accuracy is around 85% for images acquired at different times. Species composition is spatially attributed by topographical features and soil moisture conditions. Spatio-temporal variation of species composition implies the growing process and succession of different species, which is critical for understanding the evolutionary features of grassland ecosystems. Strengths and challenges of applying UAV-acquired imagery for vegetation studies are summarized at the end.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大导师发布了新的文献求助10
刚刚
刚刚
XIAOATAIA发布了新的文献求助10
刚刚
ZeyiWang发布了新的文献求助10
1秒前
小蘑菇应助蓝白胖次哇采纳,获得10
1秒前
hanhan完成签到,获得积分10
2秒前
2秒前
bfsd凡完成签到,获得积分10
2秒前
薄荷发布了新的文献求助10
2秒前
昏睡的嵩应助结实刺猬采纳,获得10
3秒前
囚徒发布了新的文献求助10
4秒前
平凡发布了新的文献求助10
5秒前
时米米米完成签到,获得积分10
5秒前
天天快乐应助忧伤的白秋采纳,获得10
5秒前
等待靖儿完成签到,获得积分10
5秒前
刻苦的烤鸡完成签到 ,获得积分10
6秒前
糖宝完成签到 ,获得积分0
6秒前
6秒前
6秒前
完美的冷荷完成签到,获得积分10
7秒前
7秒前
芳芳子完成签到 ,获得积分10
8秒前
浮生完成签到,获得积分10
8秒前
8秒前
专注的问寒应助内向迎蕾采纳,获得20
9秒前
XIAOATAIA完成签到,获得积分10
9秒前
amazeman111发布了新的文献求助10
10秒前
专注的问寒应助茜茜采纳,获得50
10秒前
沉默的驳发布了新的文献求助10
10秒前
10秒前
大意的惊蛰完成签到,获得积分10
10秒前
Yidie发布了新的文献求助10
11秒前
orixero应助沉睡的大马猴采纳,获得10
11秒前
个性凡儿发布了新的文献求助10
11秒前
12秒前
yummm完成签到 ,获得积分10
12秒前
13秒前
希望天下0贩的0应助囚徒采纳,获得10
13秒前
13秒前
蝉蝉完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5741647
求助须知:如何正确求助?哪些是违规求助? 5403409
关于积分的说明 15343085
捐赠科研通 4883236
什么是DOI,文献DOI怎么找? 2624979
邀请新用户注册赠送积分活动 1573765
关于科研通互助平台的介绍 1530709