线性多步法
离散化
数学
有限元法
曲柄-尼科尔森法
梯形法则
应用数学
混合有限元法
数学分析
规范(哲学)
正交(天文学)
运动方程
基质(化学分析)
数值积分
经典力学
微分方程
物理
常微分方程
光学
热力学
复合材料
微分代数方程
政治学
材料科学
法学
作者
Yinnian He,Yingwen Guo
出处
期刊:Discrete and Continuous Dynamical Systems-series B
[American Institute of Mathematical Sciences]
日期:2015-08-01
卷期号:20 (8): 2583-2609
被引量:6
标识
DOI:10.3934/dcdsb.2015.20.2583
摘要
In this paper, we study a fully discrete finite element method with second order accuracy in time for the equations of motion arising in the Oldroyd model of viscoelastic fluids. This method is based on a finite element approximation for the space discretization and the Crank-Nicolson/Adams-Bashforth scheme for the time discretization. The integral term is discretized by the trapezoidal rule to match with the second order accuracy in time. It leads to a linear system with a constant matrix and thus greatly increases the computational efficiency. Taking the nonnegativity of the quadrature rule and the technique of variable substitution for the trapezoidal rule approximation, we prove that this fully discrete finite element method is almost unconditionally stable and convergent. Furthermore, by the negative norm technique, we derive the $H^1$ and $L^2$-optimal error estimates of the velocity and the pressure.
科研通智能强力驱动
Strongly Powered by AbleSci AI