A Review of Current Regenerative Medicine Strategies that Utilize Nanotechnology to Treat Cartilage Damage.

组织工程 再生医学 软骨 生物材料 软骨损伤 医学 再生(生物学) 脚手架 纳米技术 电流(流体) 生物相容性材料 重症监护医学 评论文章 组织修复 关节软骨 生物医学工程 工程伦理学 透明软骨 病理 干细胞 材料科学 解剖 骨关节炎 生物 细胞生物学 替代医学
作者
R. Kumar,Michelle Griffin,Peter E. M. Butler
出处
期刊:The Open Orthopaedics Journal [Bentham Science]
卷期号:10 (1): 862-876 被引量:10
标识
DOI:10.2174/1874325001610010862
摘要

Background Cartilage is an important found in a variety of anatomical locations. Damage to cartilage is particularly detrimental, owing to its intrinsically poor healing capacity. Current reconstructive options for cartilage repair are limited, and alternative approaches are required. Biomaterial science and Tissue are multidisciplinary areas of research that integrate biological and principles for the purpose of restoring premorbid function. Biomaterial science traditionally focuses on the replacement of diseased or damaged with implants. Conversely, utilizes porous biomimetic scaffolds, containing cells and bioactive molecules, to regenerate functional tissue. However, both paradigms feature several disadvantages. Faced with the increasing clinical burden of cartilage defects, attention has shifted towards the incorporation of Nanotechnology into these areas of regenerative medicine. Methods Searches were conducted on Pubmed using the terms cartilage, reconstruction, nanotechnology, nanomaterials, tissue engineering and biomaterials. Abstracts were examined to identify articles of relevance, and further papers were obtained from the citations within. Results The content of 96 articles was ultimately reviewed. The literature yielded no studies that have progressed beyond in vitro and in vivo experimentation. Several limitations to the use of nanomaterials to reconstruct damaged cartilage were identified in both the and biomaterial fields. Conclusion Nanomaterials have unique physicochemical properties that interact with biological systems in novel ways, potentially opening new avenues for the advancement of constructs used to repair cartilage. However, research into these technologies is in its infancy, and clinical translation remains elusive.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
个性的德天完成签到,获得积分10
刚刚
充电宝应助interest-li采纳,获得10
刚刚
1秒前
毕个业完成签到 ,获得积分10
1秒前
诚心的箴完成签到,获得积分10
2秒前
addi111完成签到,获得积分10
2秒前
2024020847完成签到,获得积分10
2秒前
芝麻糊发布了新的文献求助10
3秒前
爱静静应助赵文若采纳,获得10
3秒前
我根本没长尾巴完成签到,获得积分10
3秒前
德行天下完成签到,获得积分10
4秒前
开朗可行发布了新的文献求助10
4秒前
5秒前
风信子完成签到,获得积分10
5秒前
吃饱不兜着走完成签到,获得积分20
5秒前
闪闪的夜阑完成签到,获得积分10
5秒前
111完成签到,获得积分10
6秒前
wzh完成签到 ,获得积分10
6秒前
Nico多多看paper完成签到,获得积分10
7秒前
FashionBoy应助zr237618采纳,获得10
8秒前
加油完成签到,获得积分10
9秒前
浅眸流年完成签到,获得积分10
9秒前
梁超完成签到,获得积分10
9秒前
xiaoxia完成签到,获得积分10
10秒前
yurihuang完成签到,获得积分10
10秒前
10秒前
fei完成签到,获得积分10
10秒前
一颗烂番茄完成签到 ,获得积分10
11秒前
英俊的铭应助墨丿筠采纳,获得10
12秒前
大傻春完成签到 ,获得积分10
12秒前
小牛同志完成签到,获得积分10
12秒前
xl²-B完成签到,获得积分10
13秒前
liuxian完成签到,获得积分10
13秒前
温暖小松鼠完成签到 ,获得积分10
14秒前
tongxiehou1完成签到,获得积分10
14秒前
苗条的小肥羊完成签到,获得积分10
14秒前
14秒前
wtdai完成签到,获得积分10
14秒前
天Q完成签到,获得积分10
15秒前
hivivian完成签到,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3556082
求助须知:如何正确求助?哪些是违规求助? 3131635
关于积分的说明 9392313
捐赠科研通 2831483
什么是DOI,文献DOI怎么找? 1556442
邀请新用户注册赠送积分活动 726605
科研通“疑难数据库(出版商)”最低求助积分说明 715912