A Review of Current Regenerative Medicine Strategies that Utilize Nanotechnology to Treat Cartilage Damage.

组织工程 再生医学 软骨 生物材料 软骨损伤 医学 再生(生物学) 脚手架 纳米技术 电流(流体) 生物相容性材料 重症监护医学 评论文章 组织修复 关节软骨 生物医学工程 工程伦理学 透明软骨 病理 干细胞 材料科学 解剖 骨关节炎 生物 细胞生物学 替代医学
作者
R. Kumar,Michelle Griffin,Peter E. M. Butler
出处
期刊:The Open Orthopaedics Journal [Bentham Science]
卷期号:10 (1): 862-876 被引量:10
标识
DOI:10.2174/1874325001610010862
摘要

Background Cartilage is an important found in a variety of anatomical locations. Damage to cartilage is particularly detrimental, owing to its intrinsically poor healing capacity. Current reconstructive options for cartilage repair are limited, and alternative approaches are required. Biomaterial science and Tissue are multidisciplinary areas of research that integrate biological and principles for the purpose of restoring premorbid function. Biomaterial science traditionally focuses on the replacement of diseased or damaged with implants. Conversely, utilizes porous biomimetic scaffolds, containing cells and bioactive molecules, to regenerate functional tissue. However, both paradigms feature several disadvantages. Faced with the increasing clinical burden of cartilage defects, attention has shifted towards the incorporation of Nanotechnology into these areas of regenerative medicine. Methods Searches were conducted on Pubmed using the terms cartilage, reconstruction, nanotechnology, nanomaterials, tissue engineering and biomaterials. Abstracts were examined to identify articles of relevance, and further papers were obtained from the citations within. Results The content of 96 articles was ultimately reviewed. The literature yielded no studies that have progressed beyond in vitro and in vivo experimentation. Several limitations to the use of nanomaterials to reconstruct damaged cartilage were identified in both the and biomaterial fields. Conclusion Nanomaterials have unique physicochemical properties that interact with biological systems in novel ways, potentially opening new avenues for the advancement of constructs used to repair cartilage. However, research into these technologies is in its infancy, and clinical translation remains elusive.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
uilyang发布了新的文献求助30
刚刚
xiao双月完成签到,获得积分10
1秒前
1秒前
2秒前
木头羊发布了新的文献求助10
2秒前
2秒前
wangwei完成签到 ,获得积分10
2秒前
安南完成签到 ,获得积分10
2秒前
3秒前
ttrr完成签到,获得积分10
4秒前
zheng发布了新的文献求助10
4秒前
Jadedew完成签到,获得积分10
4秒前
JamesPei应助我迷了鹿采纳,获得10
4秒前
lx发布了新的文献求助30
5秒前
5秒前
ziyuixnshi发布了新的文献求助10
6秒前
6秒前
Ava应助demian采纳,获得10
6秒前
Tireastani应助刘四毛采纳,获得10
7秒前
ally完成签到,获得积分10
8秒前
搬砖的冰美式完成签到,获得积分10
8秒前
丞123完成签到,获得积分10
8秒前
大型海狮完成签到,获得积分10
9秒前
Hyh_发布了新的文献求助10
9秒前
天天快乐应助lzh采纳,获得10
10秒前
zpz发布了新的文献求助10
10秒前
李爱国应助SAODEN采纳,获得10
10秒前
苹果丝完成签到 ,获得积分10
10秒前
12秒前
12秒前
12秒前
www完成签到,获得积分10
13秒前
zxm完成签到,获得积分10
13秒前
北念霜oD4完成签到,获得积分10
13秒前
14秒前
111完成签到 ,获得积分10
14秒前
123完成签到,获得积分10
14秒前
淡水痕完成签到,获得积分10
14秒前
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986618
求助须知:如何正确求助?哪些是违规求助? 3529071
关于积分的说明 11243225
捐赠科研通 3267556
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881185
科研通“疑难数据库(出版商)”最低求助积分说明 808582