Optimization of Image Quality and Dose in Digital Mammography

乳腺摄影术 数字乳腺摄影术 图像质量 计算机科学 医学物理学 乳房成像 功勋 自动曝光控制 人工智能 计算机视觉 医学 放射科 乳腺癌 图像(数学) 癌症 内科学
作者
Agnes M. F. Fausto,Mário Lopes,Maria João Sousa,Tânia Aparecida Correia Furquim,A. W. Mól,Fermín García Velasco
出处
期刊:Journal of Digital Imaging [Springer Science+Business Media]
卷期号:30 (2): 185-196 被引量:16
标识
DOI:10.1007/s10278-016-9928-3
摘要

Nowadays, the optimization in digital mammography is one of the most important challenges in diagnostic radiology. The new digital technology has introduced additional elements to be considered in this scenario. A major goal of mammography is related to the detection of structures on the order of micrometers (μm) and the need to distinguish the different types of tissues, with very close density values. The diagnosis in mammography faces the difficulty that the breast tissues and pathological findings have very close linear attenuation coefficients within the energy range used in mammography. The aim of this study was to develop a methodology for optimizing exposure parameters of digital mammography based on a new Figure of Merit: FOM ≡ (IQFinv)2/AGD, considering the image quality and dose. The study was conducted using the digital mammography Senographe DS/GE, and CDMAM and TORMAM phantoms. The characterization of clinical practice, carried out in the mammography system under study, was performed considering different breast thicknesses, the technical parameters of exposure, and processing options of images used by the equipment’s automatic exposure system. The results showed a difference between the values of the optimized parameters and those ones chosen by the automatic system of the mammography unit, specifically for small breast. The optimized exposure parameters showed better results than those obtained by the automatic system of the mammography, for the image quality parameters and its impact on detection of breast structures when analyzed by radiologists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
景清发布了新的文献求助10
1秒前
1秒前
淡然妙松完成签到,获得积分10
1秒前
2秒前
清爽含灵发布了新的文献求助10
2秒前
一亩蔬菜发布了新的文献求助10
2秒前
永远永远完成签到,获得积分10
4秒前
以一关注了科研通微信公众号
5秒前
王老吉发布了新的文献求助10
6秒前
6秒前
万能图书馆应助不动脑筋采纳,获得10
7秒前
8秒前
淡然妙松发布了新的文献求助10
10秒前
文武完成签到,获得积分10
10秒前
10秒前
彭于晏应助XUXU采纳,获得10
11秒前
12秒前
YO发布了新的文献求助10
12秒前
13秒前
lyn完成签到,获得积分10
14秒前
14秒前
supershiyi11发布了新的文献求助10
16秒前
17秒前
小尾巴发布了新的文献求助10
18秒前
18秒前
20秒前
潇洒的宛菡完成签到,获得积分10
20秒前
领导范儿应助英俊绝义采纳,获得10
20秒前
21秒前
wer完成签到 ,获得积分10
21秒前
21秒前
21秒前
Hbobo发布了新的文献求助10
22秒前
EvilS完成签到,获得积分10
22秒前
鸣笛应助一一采纳,获得30
22秒前
本尼脸上褶子完成签到 ,获得积分10
23秒前
上官若男应助顺顺顺采纳,获得10
23秒前
上官若男应助wbing采纳,获得10
23秒前
23秒前
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992711
求助须知:如何正确求助?哪些是违规求助? 3533584
关于积分的说明 11263072
捐赠科研通 3273260
什么是DOI,文献DOI怎么找? 1806018
邀请新用户注册赠送积分活动 882889
科研通“疑难数据库(出版商)”最低求助积分说明 809545