Mechanistic Simulation Workflow in Shale Gas Reservoirs

努森扩散 多孔性 油页岩 滑脱 努森数 基质(化学分析) 断裂(地质) 石油工程 地质学 材料科学 机械 岩土工程 复合材料 物理 古生物学
作者
Bicheng Yan,Lidong Mi,Yuhe Wang,Hewei Tang,Cheng An,John Killough
出处
期刊:SPE Reservoir Simulation Conference 被引量:19
标识
DOI:10.2118/182623-ms
摘要

Abstract Shale gas reservoir is comprised of highly heterogeneous porosity systems including hydraulic/secondary fractures, inorganic and organic matrix. Multiple non-Darcy flow mechanisms in the shale matrix further bring challenges for modeling. In this paper, we developed a framework combining a multi-physics compositional simulator with Multi-Porosity Modeling preprocessor for gas storage and transport in shale. A Triple-Porosity Model is used to characterize the three porosity systems in shale gas reservoirs. In the fracture porosity the heterogeneous impact of secondary fractures distribution on matrix-to-fracture fluid transfer is revealed by shape factor distribution. They are upscaled with superior accuracy from a detailed Discrete Fracture Network Model (DFN) sector model, where orthogonal hydraulic fractures are explicitly discretized. With the occurrence of nano-pores in shale matrix, the interaction between pore-wall and gas molecules is considered via Knudsen diffusion and gas slippage. Gas adsorption on the pore-wall of organic matrix is modeled by extended Langmuir isotherm. The inter-porosity and intra-porosity connectivities in the Triple-Porosity Model are flexibly controlled by arbitrary connections. Our results show that gas production in the Triple-Porosity Model with shape factor upscaled from DFN exhibits different production performance from models with uniform shape factor distribution. The deviations are caused by the dominance of different regions at different production periods. Moreover, different combinations of flow and storage mechanisms are investigated. We show that Langmuir desorption maintains reservoir pressure, but gas slippage and Knudsen diffusion accelerate the pressure drop. Both mechanisms contribute to improve the gas production and the consideration of them simultaneously improve gas production most.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助逻辑卷采纳,获得10
刚刚
jimmylafs发布了新的文献求助10
1秒前
耿强发布了新的文献求助10
2秒前
乌波的池塘完成签到,获得积分20
2秒前
远看寒山发布了新的文献求助10
2秒前
xi完成签到,获得积分10
3秒前
燕燕于飞发布了新的文献求助10
3秒前
3秒前
哈喽发布了新的文献求助10
4秒前
4秒前
过时的又槐完成签到,获得积分10
7秒前
CipherSage应助靓丽的芝麻采纳,获得10
9秒前
迟大猫应助summer木采纳,获得10
9秒前
10秒前
Y哦莫哦莫发布了新的文献求助10
10秒前
YBR发布了新的文献求助10
10秒前
Mu完成签到,获得积分10
12秒前
Ralap完成签到,获得积分10
13秒前
香蕉觅云应助燕燕于飞采纳,获得10
13秒前
逻辑卷发布了新的文献求助10
13秒前
13秒前
科研小民工应助研友_8KX15L采纳,获得30
13秒前
小汪完成签到,获得积分10
13秒前
14秒前
科研通AI2S应助cucucucucu采纳,获得10
14秒前
赘婿应助科研废物采纳,获得10
15秒前
jing216发布了新的文献求助10
20秒前
Jenny发布了新的文献求助30
20秒前
Vii应助星野爱采纳,获得10
20秒前
CipherSage应助樱桃采纳,获得10
20秒前
20秒前
丘比特应助粥蓝采纳,获得10
22秒前
22秒前
22秒前
22秒前
胖大海完成签到,获得积分20
23秒前
23秒前
23秒前
晓雯完成签到,获得积分10
24秒前
24秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3526037
求助须知:如何正确求助?哪些是违规求助? 3106453
关于积分的说明 9280410
捐赠科研通 2804080
什么是DOI,文献DOI怎么找? 1539215
邀请新用户注册赠送积分活动 716511
科研通“疑难数据库(出版商)”最低求助积分说明 709472