One-step, integrated fabrication of Co2P nanoparticles encapsulated N, P dual-doped CNTs for highly advanced total water splitting

塔菲尔方程 材料科学 过电位 阳极 电解 阴极 纳米技术 电流密度 分解水 催化作用 纳米颗粒 碳纳米管 磷化物 化学工程 电极 冶金 金属 电化学 物理化学 有机化学 工程类 物理 电解质 光催化 化学 量子力学
作者
Debanjan Das,Karuna Kar Nanda
出处
期刊:Nano Energy [Elsevier]
卷期号:30: 303-311 被引量:207
标识
DOI:10.1016/j.nanoen.2016.10.024
摘要

A one-step/one-pot strategy to synthesize phase pure Co2P nanoparticles encapsulated N, P dual-doped carbon nanotubes (denoted as Co2P/CNT) is developed. The method is free of toxic, pyrophoric alkylphosphine as the phosphorus source, does not involve the use of sophisticated instrumentation or expensive precursors and may be extended to other transition-metal phosphides. When the as prepared Co2P/CNTs are applied as an anode for OER in 1 M KOH, a current density of 10 mA/cm2 is achieved at an overpotential of 292 mV which is 36 mV less than that required for the state-of-art OER catalyst RuO2 with a small Tafel slope of ∼68 mV/decade. While applied as a cathode towards HER, Co2P/CNTs exhibit a current density of 10 mA/cm2 at an overpotential of 132 mV with a Tafel slope of 103 mV/dec that compares favourably with the state-of-the art HER catalyst, Pt/C. After 15 h of continuous electrolysis for both HER and OER, the electrode material preserves its structure along with its robust catalytic activity which points out to their excellent stability. A total alkaline water electrolyzer constructed by employing Co2P/CNT as catalyst on both anode and cathode delivered a current density of 10 mA/cm2 at around 1.53 V over an extended operational period rivalling the state-of-art combination of Pt/C and RuO2 and is among the best of the bi-functional total-water splitting electrocatalysts reported till date. This remarkable performance of Co2P/CNTs can be attributed to the intrinsic catalytic activity of Co2P nanoparticles fortified with heteroatom doped few layered graphene which results in enhanced electrical conductivity besides providing long-term stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助灵巧荆采纳,获得10
1秒前
wjn完成签到,获得积分10
1秒前
2秒前
竹子完成签到,获得积分10
2秒前
MAKEYF完成签到 ,获得积分10
2秒前
3秒前
Owen应助猪猪hero采纳,获得10
3秒前
4秒前
CipherSage应助海棠yiyi采纳,获得50
5秒前
Khr1stINK发布了新的文献求助10
5秒前
5秒前
脑洞疼应助卡卡采纳,获得10
5秒前
5秒前
Rrr发布了新的文献求助10
6秒前
科研通AI5应助zmy采纳,获得10
7秒前
William鉴哲发布了新的文献求助10
7秒前
情怀应助只道寻常采纳,获得10
8秒前
8秒前
cyy完成签到,获得积分20
8秒前
orixero应助小庄采纳,获得10
9秒前
10秒前
侦察兵发布了新的文献求助10
10秒前
司徒元瑶完成签到 ,获得积分10
10秒前
梓榆发布了新的文献求助10
10秒前
10秒前
sweetbearm应助通~采纳,获得10
10秒前
斯文败类应助成就映秋采纳,获得10
11秒前
123456完成签到,获得积分10
11秒前
11秒前
moonlin完成签到 ,获得积分10
11秒前
12秒前
13秒前
深情安青应助科研通管家采纳,获得10
13秒前
14秒前
wanci应助科研通管家采纳,获得10
14秒前
英俊的铭应助科研通管家采纳,获得10
14秒前
思源应助蟹黄堡不打折采纳,获得10
14秒前
Lily应助科研通管家采纳,获得40
14秒前
敬老院N号应助科研通管家采纳,获得30
14秒前
zzzq应助科研通管家采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794