Missing Value Monitoring Enhances the Robustness in Proteomics Quantitation

猎枪 鸟枪蛋白质组学 定量蛋白质组学 缺少数据 蛋白质组学 计算生物学 蛋白质组 稳健性(进化) 生物 等压标记 工作流程 生物信息学 数据挖掘 计算机科学 生物化学 统计 数学 数据库 基因
作者
Vittoria Matafora,Andrea Corno,Andrea Ciliberto,Angela Bachi
出处
期刊:Journal of Proteome Research [American Chemical Society]
卷期号:16 (4): 1719-1727 被引量:15
标识
DOI:10.1021/acs.jproteome.6b01056
摘要

In global proteomic analysis, it is estimated that proteins span from millions to less than 100 copies per cell. The challenge of protein quantitation by classic shotgun proteomic techniques relies on the presence of missing values in peptides belonging to low-abundance proteins that lowers intraruns reproducibility affecting postdata statistical analysis. Here, we present a new analytical workflow MvM (missing value monitoring) able to recover quantitation of missing values generated by shotgun analysis. In particular, we used confident data-dependent acquisition (DDA) quantitation only for proteins measured in all the runs, while we filled the missing values with data-independent acquisition analysis using the library previously generated in DDA. We analyzed cell cycle regulated proteins, as they are low abundance proteins with highly dynamic expression levels. Indeed, we found that cell cycle related proteins are the major components of the missing values-rich proteome. Using the MvM workflow, we doubled the number of robustly quantified cell cycle related proteins, and we reduced the number of missing values achieving robust quantitation for proteins over ∼50 molecules per cell. MvM allows lower quantification variance among replicates for low abundance proteins with respect to DDA analysis, which demonstrates the potential of this novel workflow to measure low abundance, dynamically regulated proteins.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
马騳骉完成签到,获得积分10
2秒前
2秒前
whisper完成签到,获得积分10
3秒前
orixero应助典雅涵瑶采纳,获得10
3秒前
小谢完成签到,获得积分10
3秒前
孤独小震发布了新的文献求助10
4秒前
Time发布了新的文献求助10
6秒前
6秒前
思源应助soong采纳,获得10
6秒前
科研通AI2S应助11采纳,获得10
6秒前
海底月发布了新的文献求助10
7秒前
bkagyin应助积极的笑容采纳,获得10
8秒前
YTY发布了新的文献求助10
8秒前
8秒前
LYDC完成签到 ,获得积分10
8秒前
科研通AI2S应助旅行的天空采纳,获得10
9秒前
自然的沛凝完成签到,获得积分10
11秒前
ding应助科研通管家采纳,获得10
11秒前
完美世界应助科研通管家采纳,获得10
12秒前
LamChem发布了新的文献求助10
12秒前
12秒前
洋山芋完成签到,获得积分10
13秒前
Min发布了新的文献求助10
13秒前
16秒前
活泼鸵鸟完成签到,获得积分20
16秒前
17秒前
咩咩羊完成签到 ,获得积分10
21秒前
白夜完成签到 ,获得积分10
21秒前
22秒前
以岸给以岸的求助进行了留言
22秒前
汉堡包应助张又蓝采纳,获得10
22秒前
23秒前
射天狼发布了新的文献求助10
23秒前
深情安青应助麦兜采纳,获得10
25秒前
可爱的函函应助温暖幻桃采纳,获得10
27秒前
Min完成签到,获得积分10
30秒前
30秒前
寻道图强应助Jeffrey采纳,获得30
31秒前
33秒前
疯狂的语兰完成签到,获得积分10
34秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157474
求助须知:如何正确求助?哪些是违规求助? 2808881
关于积分的说明 7878865
捐赠科研通 2467299
什么是DOI,文献DOI怎么找? 1313327
科研通“疑难数据库(出版商)”最低求助积分说明 630393
版权声明 601919