表观遗传学
生物
染色质
表观基因组
表观遗传学
计算生物学
增强子
DNA甲基化
转录组
基因组
重编程
作者
Jason D. Buenrostro,Corces,Bing Wu,Alicia N. Schep,Caleb A. Lareau,Ravindra Majeti,Howard Y. Chang,William J. Greenleaf
出处
期刊:bioRxiv
日期:2017-02-21
卷期号:: 109843-
被引量:9
摘要
Normal human hematopoiesis involves cellular differentiation of multipotent cells into progressively more lineage-restricted states. While epigenomic landscapes of this process have been explored in immunophenotypically-defined populations, the single-cell regulatory variation that defines hematopoietic differentiation has been hidden by ensemble averaging. We generated single-cell chromatin accessibility landscapes across 8 populations of immunophenotypically-defined human hematopoietic cell types. Using bulk chromatin accessibility profiles to scaffold our single-cell data analysis, we constructed an epigenomic landscape of human hematopoiesis and characterized epigenomic heterogeneity within phenotypically sorted populations to find epigenomic lineage-bias toward different developmental branches in multipotent stem cell states. We identify and isolate sub-populations within classically-defined granulocyte-macrophage progenitors (GMPs) and use ATAC-seq and RNA-seq to confirm that GMPs are epigenomically and transcriptomically heterogeneous. Furthermore, we identified transcription factors and cis-regulatory elements linked to changes in chromatin accessibility within cellular populations and across a continuous myeloid developmental trajectory, and observe relatively simple TF motif dynamics give rise to a broad diversity of accessibility dynamics at cis-regulatory elements. Overall, this work provides a template for exploration of complex regulatory dynamics in primary human tissues at the ultimate level of granular specificity - the single cell.
科研通智能强力驱动
Strongly Powered by AbleSci AI