Multi-Scale Convolutional Neural Networks for Time Series Classification

计算机科学 卷积神经网络 人工智能 比例(比率) 模式识别(心理学) 深度学习 人工神经网络 系列(地层学) 机器学习 时间序列 特征(语言学)
作者
Zhicheng Cui,Wenlin Chen,Yixin Chen
出处
期刊:Cornell University - arXiv 被引量:82
标识
DOI:10.48550/arxiv.1603.06995
摘要

Time series classification (TSC), the problem of predicting class labels of time series, has been around for decades within the community of data mining and machine learning, and found many important applications such as biomedical engineering and clinical prediction. However, it still remains challenging and falls short of classification accuracy and efficiency. Traditional approaches typically involve extracting discriminative features from the original time series using dynamic time warping (DTW) or shapelet transformation, based on which an off-the-shelf classifier can be applied. These methods are ad-hoc and separate the feature extraction part with the classification part, which limits their accuracy performance. Plus, most existing methods fail to take into account the fact that time series often have features at different time scales. To address these problems, we propose a novel end-to-end neural network model, Multi-Scale Convolutional Neural Networks (MCNN), which incorporates feature extraction and classification in a single framework. Leveraging a novel multi-branch layer and learnable convolutional layers, MCNN automatically extracts features at different scales and frequencies, leading to superior feature representation. MCNN is also computationally efficient, as it naturally leverages GPU computing. We conduct comprehensive empirical evaluation with various existing methods on a large number of benchmark datasets, and show that MCNN advances the state-of-the-art by achieving superior accuracy performance than other leading methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xyzemm完成签到 ,获得积分10
1秒前
1秒前
1秒前
无花果应助健壮安柏采纳,获得10
2秒前
大福发布了新的文献求助10
2秒前
超帅的萤发布了新的文献求助10
3秒前
小马甲应助满意人英采纳,获得10
3秒前
鲤鱼初柳完成签到 ,获得积分10
3秒前
尊敬寒松发布了新的文献求助20
3秒前
5秒前
Jasper应助俭朴大叔采纳,获得10
6秒前
6秒前
领导范儿应助wangnn采纳,获得10
7秒前
8秒前
8秒前
kyle竣完成签到,获得积分10
10秒前
科研通AI5应助彩色路人采纳,获得10
11秒前
obj发布了新的文献求助10
11秒前
科研小民工应助上官追命采纳,获得20
11秒前
Owen应助小猫爱吃鱼饼采纳,获得10
11秒前
可可发布了新的文献求助10
11秒前
过滤膜完成签到,获得积分10
12秒前
12秒前
12秒前
科研通AI5应助馒头采纳,获得10
12秒前
情怀应助喜悦剑通采纳,获得10
13秒前
BASS完成签到,获得积分10
14秒前
共享精神应助韩无忧采纳,获得10
14秒前
科研通AI2S应助乐观绿海采纳,获得10
14秒前
yang发布了新的文献求助10
15秒前
15秒前
15秒前
liu完成签到 ,获得积分10
15秒前
16秒前
ws340822发布了新的文献求助10
16秒前
无花果应助Liuyumei采纳,获得10
16秒前
17秒前
可爱的函函应助明理亦云采纳,获得10
17秒前
17秒前
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1050
Les Mantodea de Guyane Insecta, Polyneoptera 1000
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
Oligonucleotide Synthesis: a Practical Approach 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3590126
求助须知:如何正确求助?哪些是违规求助? 3158548
关于积分的说明 9520381
捐赠科研通 2861526
什么是DOI,文献DOI怎么找? 1572595
邀请新用户注册赠送积分活动 737955
科研通“疑难数据库(出版商)”最低求助积分说明 722598