DATABASE-RELATED ACCURACY AND UNCERTAINTY OF PEDOTRANSFER FUNCTIONS

Pedotransfer函数 导水率 数据库 土壤科学 土壤质地 校准 堆积密度 淤泥 环境科学 保水性 含水量 数学 统计 水文学(农业) 土壤水分 岩土工程 计算机科学 地质学 古生物学
作者
Marcel G. Schaap,Feike J. Leij
出处
期刊:Soil Science [Ovid Technologies (Wolters Kluwer)]
卷期号:163 (10): 765-779 被引量:463
标识
DOI:10.1097/00010694-199810000-00001
摘要

Pedotransfer functions (PTFs) are becoming a more common way to predict soil hydraulic properties from soil texture, bulk density, and organic matter content. Thus far, the calibration and validation of PTFs has been hampered by a lack of suitable databases. In this paper we employed three databases (RAWLS, AHUJA, and UNSODA) to evaluate the accuracy and uncertainty of neural network-based PTFs. Sand, silt, and clay percentages and bulk density were used as input for the PTFs, which subsequently provided retention parameters and saturated hydraulic conductivity, Ks as output. Calibration and validation of PTFs were carried out on independent samples from the same database through combination with the bootstrap method. This method also yielded the possibility of calculating uncertainty estimates of predicted hydraulic parameters. Calibration and validation results showed that water retention could be predicted with a root mean square residual (RMSR) between 0.06 and 0.10 cm3 cm−3; the RMSR of log(Ks) was between 0.4 and 0.7 log (cm day−1). Cross-validation was used to test how well PTFs that were calibrated for one database could predict the hydraulic properties of the other two databases. The results showed that systematically different predictions were made when the RMSR values increased to between 0.08 and 0.13 cm3 cm−3 for water retention and to between 0.6 and 0.9 log(cm day−1) for log(Ks). The uncertainty in predicted Ks was one-half to one order of magnitude, whereas predicted water retention points had an uncertainty of about 0.04 to 0.10 cm3 cm−3. Uncertainties became somewhat smaller if the PTFs were calibrated on all available data. We conclude that the performance of PTFs may depend strongly on the data that were used for calibration and evaluation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
润润轩轩发布了新的文献求助10
刚刚
刚刚
orixero应助韭黄采纳,获得10
1秒前
gnufgg完成签到,获得积分10
1秒前
科研通AI5应助tabor采纳,获得10
1秒前
1秒前
互助互惠互通完成签到,获得积分10
1秒前
脑洞疼应助ziyiziyi采纳,获得10
2秒前
2秒前
2秒前
屹舟完成签到,获得积分10
3秒前
zjudxn关注了科研通微信公众号
3秒前
4秒前
4秒前
科研通AI5应助hu970采纳,获得10
4秒前
4秒前
艺玲发布了新的文献求助10
5秒前
咚咚咚完成签到,获得积分10
5秒前
芋圆Z.完成签到,获得积分10
5秒前
atad2发布了新的文献求助10
5秒前
li梨完成签到,获得积分10
5秒前
6秒前
晏小敏完成签到,获得积分10
6秒前
爆米花应助风中寄云采纳,获得10
7秒前
屹舟发布了新的文献求助10
7秒前
Dou完成签到,获得积分10
7秒前
白泯完成签到,获得积分10
8秒前
1ssd发布了新的文献求助10
8秒前
667发布了新的文献求助10
8秒前
小二郎应助辰柒采纳,获得10
9秒前
10秒前
10秒前
clear完成签到,获得积分20
10秒前
10秒前
orixero应助congguitar采纳,获得10
10秒前
Evan完成签到,获得积分10
10秒前
YANG发布了新的文献求助10
11秒前
11秒前
123发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759