Electric-field-driven jet deposition micro-nano 3D printing based on a single-plate electrode

3D打印 立体光刻 材料科学 纳米技术 电流体力学 喷嘴 电极 印刷电子产品 制作 熔融沉积模型 喷射(流体) 快速成型 沉积(地质) 导电体 机械工程 复合材料 墨水池 工程类 航空航天工程 病理 物理化学 古生物学 化学 生物 替代医学 医学 沉积物
作者
Hui Cao,Guangming Zhang,Jianjun Yang,Xiaoyang Zhu,Yinbao Song,Ximeng Qi,Jiankang He,Dichen Li,Hongbo Lan
出处
期刊:Kexue tongbao [Science in China Press]
卷期号:66 (21): 2745-2757
标识
DOI:10.1360/tb-2020-1434
摘要

Micro/nano-scale 3D printing has become one of the most popular research topics of additive manufacturing due to its wide range of applications in biological tissue engineering, flexible electronics, new energy, new materials, microelectromechanical systems, and many other fields. Recent work on micro/nano-scale 3D printing has presented a series of advanced techniques, such as microstereolithography, two-photon stereolithography, micro-laser sintering, electrochemical fabrication, and electrohydrodynamic (EHD) jet printing, to directly fabricate 3D micro/nano-scale structures. However, these existing technologies are still faced with challenges in realizing multi-material, macro/micro multi-scale 3D printing. Here, we propose a new electric-field-driven jet deposition micro/nano-scale 3D printing based on a single-plate electrode. Differing from the traditional EHD printing with two counter electrodes and our previously proposed electric-field-driven jet deposition 3D printing with a single nozzle electrode, this 3D printing is achieved using technology based on a self-induced electrostatic field. In this method, the nozzle is no longer used as the electrode, and only a single-plate electrode is needed to connect to the positive electrode of high voltage power supply while the negative electrode is directly grounded, which not only overcomes the mandatory requirement of nozzle conductivity in traditional EHD jet printing, but also solves the discharge and breakdown problem of printing conductive materials on the conductive substrate. The micro/nano-scale additive manufacturing by this proposed method can be achieved by combining the necking effect of Taylor cone formed by the self-induced electrostatic field between the printing material on the nozzle tip and the top surface of the substrate, and multi-layer precise stacking by the polarization charges attraction between the printing material and the already printed materials on the substrate. In addition, considering the high-resolution and high-efficiency printing of various materials with different viscosities, we propose two working modes, including the pulsed cone-jet mode and the continuous cone-jet mode. To prove the advantages and features of the proposed method, we carried out a series of research work systematically. Firstly, the printing mechanism is revealed through theoretical analysis and numerical simulation. The higher the conductivity of the single-plate electrode is and the lower the conductivity of the nozzle is, the greater the electric field intensity is. Then, the feasibility of printing with the nozzle (conductive steel nozzle and non-conductive glass nozzle), substrate (conductive copper plate, semiconductor silicon wafer, and insulating glass plate), and printing material (conductive silver paste and non-conductive polymer) has been verified by systematic experiments. Finally, three typical cases, micro “wall” structure of polylactic acid (PLA) with a line width of 1.139 μm and a high aspect ratio of 46.8:1, high-performance (transmittance of 90.17% and sheet resistance of 4.26 Ω/sq) transparent electrode made of high viscosity silver paste, and multi-layer 3D scaffold with a line width of 20 µm and a total height of 200 µm, have been printed successfully. The new method has been proved to have unique technical advantages in high-resolution printing, multi-material, and macro/micro multi-scale printing. Therefore, it provides a new solution with low cost and high universality for micro/nano-scale additive manufacturing and macro/micro cross scale 3D printing, especially in the field of biological tissue engineering and printing electronics.


科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
小二郎应助zmftl采纳,获得10
2秒前
张小星完成签到,获得积分10
3秒前
3秒前
早早发布了新的文献求助10
6秒前
科研通AI6应助侯署江采纳,获得10
7秒前
科目三应助张博采纳,获得10
10秒前
binsir完成签到,获得积分10
12秒前
坚定小松鼠完成签到,获得积分20
13秒前
15秒前
跳跃的数据线完成签到,获得积分10
16秒前
handada完成签到,获得积分20
16秒前
Jasper应助看看采纳,获得10
16秒前
lololol发布了新的文献求助20
16秒前
赘婿应助老北京采纳,获得10
17秒前
17秒前
姗姗完成签到,获得积分10
17秒前
友好酸奶完成签到,获得积分10
18秒前
19秒前
陶毅完成签到,获得积分10
22秒前
23秒前
23秒前
bbbui完成签到 ,获得积分10
24秒前
哇咔咔发布了新的文献求助10
24秒前
mirror应助伶俐的安柏采纳,获得10
25秒前
嘉的科研完成签到,获得积分10
25秒前
25秒前
26秒前
耍酷慕梅完成签到,获得积分20
26秒前
Fly发布了新的文献求助10
26秒前
英俊的宛发布了新的文献求助10
27秒前
求助人员发布了新的文献求助10
27秒前
张博发布了新的文献求助10
28秒前
空空完成签到,获得积分10
28秒前
chowjb发布了新的文献求助30
29秒前
周全敏完成签到 ,获得积分10
29秒前
笑点低的黄豆完成签到,获得积分10
29秒前
看看完成签到,获得积分10
30秒前
吱哦周完成签到,获得积分10
30秒前
黑猫乾杯应助耍酷慕梅采纳,获得10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600839
求助须知:如何正确求助?哪些是违规求助? 4686362
关于积分的说明 14843382
捐赠科研通 4678240
什么是DOI,文献DOI怎么找? 2538963
邀请新用户注册赠送积分活动 1505954
关于科研通互助平台的介绍 1471241