亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Electric-field-driven jet deposition micro-nano 3D printing based on a single-plate electrode

3D打印 立体光刻 材料科学 纳米技术 电流体力学 喷嘴 电极 印刷电子产品 制作 熔融沉积模型 喷射(流体) 快速成型 沉积(地质) 导电体 机械工程 复合材料 墨水池 工程类 航空航天工程 病理 物理化学 古生物学 化学 生物 替代医学 医学 沉积物
作者
Hui Cao,Guangming Zhang,Jianjun Yang,Xiaoyang Zhu,Yinbao Song,Ximeng Qi,Jiankang He,Dichen Li,Hongbo Lan
出处
期刊:Kexue tongbao [Science China Press]
卷期号:66 (21): 2745-2757
标识
DOI:10.1360/tb-2020-1434
摘要

Micro/nano-scale 3D printing has become one of the most popular research topics of additive manufacturing due to its wide range of applications in biological tissue engineering, flexible electronics, new energy, new materials, microelectromechanical systems, and many other fields. Recent work on micro/nano-scale 3D printing has presented a series of advanced techniques, such as microstereolithography, two-photon stereolithography, micro-laser sintering, electrochemical fabrication, and electrohydrodynamic (EHD) jet printing, to directly fabricate 3D micro/nano-scale structures. However, these existing technologies are still faced with challenges in realizing multi-material, macro/micro multi-scale 3D printing. Here, we propose a new electric-field-driven jet deposition micro/nano-scale 3D printing based on a single-plate electrode. Differing from the traditional EHD printing with two counter electrodes and our previously proposed electric-field-driven jet deposition 3D printing with a single nozzle electrode, this 3D printing is achieved using technology based on a self-induced electrostatic field. In this method, the nozzle is no longer used as the electrode, and only a single-plate electrode is needed to connect to the positive electrode of high voltage power supply while the negative electrode is directly grounded, which not only overcomes the mandatory requirement of nozzle conductivity in traditional EHD jet printing, but also solves the discharge and breakdown problem of printing conductive materials on the conductive substrate. The micro/nano-scale additive manufacturing by this proposed method can be achieved by combining the necking effect of Taylor cone formed by the self-induced electrostatic field between the printing material on the nozzle tip and the top surface of the substrate, and multi-layer precise stacking by the polarization charges attraction between the printing material and the already printed materials on the substrate. In addition, considering the high-resolution and high-efficiency printing of various materials with different viscosities, we propose two working modes, including the pulsed cone-jet mode and the continuous cone-jet mode. To prove the advantages and features of the proposed method, we carried out a series of research work systematically. Firstly, the printing mechanism is revealed through theoretical analysis and numerical simulation. The higher the conductivity of the single-plate electrode is and the lower the conductivity of the nozzle is, the greater the electric field intensity is. Then, the feasibility of printing with the nozzle (conductive steel nozzle and non-conductive glass nozzle), substrate (conductive copper plate, semiconductor silicon wafer, and insulating glass plate), and printing material (conductive silver paste and non-conductive polymer) has been verified by systematic experiments. Finally, three typical cases, micro “wall” structure of polylactic acid (PLA) with a line width of 1.139 μm and a high aspect ratio of 46.8:1, high-performance (transmittance of 90.17% and sheet resistance of 4.26 Ω/sq) transparent electrode made of high viscosity silver paste, and multi-layer 3D scaffold with a line width of 20 µm and a total height of 200 µm, have been printed successfully. The new method has been proved to have unique technical advantages in high-resolution printing, multi-material, and macro/micro multi-scale printing. Therefore, it provides a new solution with low cost and high universality for micro/nano-scale additive manufacturing and macro/micro cross scale 3D printing, especially in the field of biological tissue engineering and printing electronics.

最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
青争发布了新的文献求助10
11秒前
ooooooo发布了新的文献求助10
12秒前
LJL完成签到 ,获得积分10
12秒前
13秒前
执着傲柏发布了新的文献求助10
14秒前
17秒前
大溺完成签到 ,获得积分10
20秒前
27秒前
思源应助青争采纳,获得10
31秒前
沉默的钵钵鸡完成签到,获得积分10
32秒前
36秒前
江佳颖完成签到 ,获得积分10
36秒前
36秒前
37秒前
38秒前
歪屁发布了新的文献求助10
44秒前
57秒前
59秒前
1分钟前
Akim应助DDD采纳,获得10
1分钟前
可爱的函函应助江佳颖采纳,获得10
1分钟前
落后以旋完成签到,获得积分10
1分钟前
wpz完成签到,获得积分10
1分钟前
1分钟前
落后以旋发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
ding应助落后以旋采纳,获得10
1分钟前
DDD发布了新的文献求助10
1分钟前
往前走别回头完成签到,获得积分10
1分钟前
乐乐应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
青争发布了新的文献求助10
1分钟前
1分钟前
2分钟前
滑稽剑客发布了新的文献求助10
2分钟前
啾啾尼泊尔完成签到,获得积分10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4595037
求助须知:如何正确求助?哪些是违规求助? 4007597
关于积分的说明 12408221
捐赠科研通 3686108
什么是DOI,文献DOI怎么找? 2031637
邀请新用户注册赠送积分活动 1064872
科研通“疑难数据库(出版商)”最低求助积分说明 950198