Electric-field-driven jet deposition micro-nano 3D printing based on a single-plate electrode

3D打印 立体光刻 材料科学 纳米技术 电流体力学 喷嘴 电极 印刷电子产品 制作 熔融沉积模型 喷射(流体) 快速成型 沉积(地质) 导电体 机械工程 复合材料 墨水池 工程类 航空航天工程 医学 古生物学 化学 替代医学 物理化学 病理 沉积物 生物
作者
Hui Cao,Guangming Zhang,Jianjun Yang,Xiaoyang Zhu,Yinbao Song,Ximeng Qi,Jiankang He,Dichen Li,Hongbo Lan
出处
期刊:Kexue tongbao [Science in China Press]
卷期号:66 (21): 2745-2757
标识
DOI:10.1360/tb-2020-1434
摘要

Micro/nano-scale 3D printing has become one of the most popular research topics of additive manufacturing due to its wide range of applications in biological tissue engineering, flexible electronics, new energy, new materials, microelectromechanical systems, and many other fields. Recent work on micro/nano-scale 3D printing has presented a series of advanced techniques, such as microstereolithography, two-photon stereolithography, micro-laser sintering, electrochemical fabrication, and electrohydrodynamic (EHD) jet printing, to directly fabricate 3D micro/nano-scale structures. However, these existing technologies are still faced with challenges in realizing multi-material, macro/micro multi-scale 3D printing. Here, we propose a new electric-field-driven jet deposition micro/nano-scale 3D printing based on a single-plate electrode. Differing from the traditional EHD printing with two counter electrodes and our previously proposed electric-field-driven jet deposition 3D printing with a single nozzle electrode, this 3D printing is achieved using technology based on a self-induced electrostatic field. In this method, the nozzle is no longer used as the electrode, and only a single-plate electrode is needed to connect to the positive electrode of high voltage power supply while the negative electrode is directly grounded, which not only overcomes the mandatory requirement of nozzle conductivity in traditional EHD jet printing, but also solves the discharge and breakdown problem of printing conductive materials on the conductive substrate. The micro/nano-scale additive manufacturing by this proposed method can be achieved by combining the necking effect of Taylor cone formed by the self-induced electrostatic field between the printing material on the nozzle tip and the top surface of the substrate, and multi-layer precise stacking by the polarization charges attraction between the printing material and the already printed materials on the substrate. In addition, considering the high-resolution and high-efficiency printing of various materials with different viscosities, we propose two working modes, including the pulsed cone-jet mode and the continuous cone-jet mode. To prove the advantages and features of the proposed method, we carried out a series of research work systematically. Firstly, the printing mechanism is revealed through theoretical analysis and numerical simulation. The higher the conductivity of the single-plate electrode is and the lower the conductivity of the nozzle is, the greater the electric field intensity is. Then, the feasibility of printing with the nozzle (conductive steel nozzle and non-conductive glass nozzle), substrate (conductive copper plate, semiconductor silicon wafer, and insulating glass plate), and printing material (conductive silver paste and non-conductive polymer) has been verified by systematic experiments. Finally, three typical cases, micro “wall” structure of polylactic acid (PLA) with a line width of 1.139 μm and a high aspect ratio of 46.8:1, high-performance (transmittance of 90.17% and sheet resistance of 4.26 Ω/sq) transparent electrode made of high viscosity silver paste, and multi-layer 3D scaffold with a line width of 20 µm and a total height of 200 µm, have been printed successfully. The new method has been proved to have unique technical advantages in high-resolution printing, multi-material, and macro/micro multi-scale printing. Therefore, it provides a new solution with low cost and high universality for micro/nano-scale additive manufacturing and macro/micro cross scale 3D printing, especially in the field of biological tissue engineering and printing electronics.

最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jasper发布了新的文献求助10
刚刚
1秒前
1秒前
动听的母鸡完成签到,获得积分10
2秒前
皮皮关注了科研通微信公众号
2秒前
大东东完成签到,获得积分10
2秒前
花开那年完成签到,获得积分10
4秒前
zwenng发布了新的文献求助10
4秒前
慕青应助pentayouth采纳,获得30
5秒前
顺利毕业完成签到 ,获得积分10
5秒前
Wang发布了新的文献求助10
6秒前
hotongue发布了新的文献求助10
7秒前
7秒前
Jason李完成签到,获得积分10
8秒前
汉堡包应助摩羯座小黄鸭采纳,获得10
8秒前
无花果应助pentayouth采纳,获得10
9秒前
贤惠的碧空完成签到,获得积分10
10秒前
11秒前
jasper完成签到,获得积分10
12秒前
Singularity应助pentayouth采纳,获得10
14秒前
TYU2021发布了新的文献求助10
14秒前
李倇仪发布了新的文献求助10
15秒前
15秒前
hotongue完成签到,获得积分10
15秒前
Singularity应助pentayouth采纳,获得10
18秒前
20秒前
卡皮巴拉完成签到 ,获得积分10
20秒前
20秒前
高骏伟发布了新的文献求助10
22秒前
英俊的铭应助pentayouth采纳,获得10
23秒前
王小西完成签到,获得积分10
23秒前
摩羯座小黄鸭完成签到,获得积分10
25秒前
科目三应助ll采纳,获得10
25秒前
随机子应助pentayouth采纳,获得10
27秒前
飞鸟完成签到,获得积分20
28秒前
31秒前
guard发布了新的文献求助10
34秒前
Balloon完成签到,获得积分10
35秒前
Singularity应助pentayouth采纳,获得10
36秒前
随机子应助经竺采纳,获得10
37秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165402
求助须知:如何正确求助?哪些是违规求助? 2816464
关于积分的说明 7912816
捐赠科研通 2476057
什么是DOI,文献DOI怎么找? 1318641
科研通“疑难数据库(出版商)”最低求助积分说明 632179
版权声明 602388