亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Electric-field-driven jet deposition micro-nano 3D printing based on a single-plate electrode

3D打印 立体光刻 材料科学 纳米技术 电流体力学 喷嘴 电极 印刷电子产品 制作 熔融沉积模型 喷射(流体) 快速成型 沉积(地质) 导电体 机械工程 复合材料 墨水池 工程类 航空航天工程 病理 物理化学 古生物学 化学 生物 替代医学 医学 沉积物
作者
Hui Cao,Guangming Zhang,Jianjun Yang,Xiaoyang Zhu,Yinbao Song,Ximeng Qi,Jiankang He,Dichen Li,Hongbo Lan
出处
期刊:Kexue tongbao [Science in China Press]
卷期号:66 (21): 2745-2757
标识
DOI:10.1360/tb-2020-1434
摘要

Micro/nano-scale 3D printing has become one of the most popular research topics of additive manufacturing due to its wide range of applications in biological tissue engineering, flexible electronics, new energy, new materials, microelectromechanical systems, and many other fields. Recent work on micro/nano-scale 3D printing has presented a series of advanced techniques, such as microstereolithography, two-photon stereolithography, micro-laser sintering, electrochemical fabrication, and electrohydrodynamic (EHD) jet printing, to directly fabricate 3D micro/nano-scale structures. However, these existing technologies are still faced with challenges in realizing multi-material, macro/micro multi-scale 3D printing. Here, we propose a new electric-field-driven jet deposition micro/nano-scale 3D printing based on a single-plate electrode. Differing from the traditional EHD printing with two counter electrodes and our previously proposed electric-field-driven jet deposition 3D printing with a single nozzle electrode, this 3D printing is achieved using technology based on a self-induced electrostatic field. In this method, the nozzle is no longer used as the electrode, and only a single-plate electrode is needed to connect to the positive electrode of high voltage power supply while the negative electrode is directly grounded, which not only overcomes the mandatory requirement of nozzle conductivity in traditional EHD jet printing, but also solves the discharge and breakdown problem of printing conductive materials on the conductive substrate. The micro/nano-scale additive manufacturing by this proposed method can be achieved by combining the necking effect of Taylor cone formed by the self-induced electrostatic field between the printing material on the nozzle tip and the top surface of the substrate, and multi-layer precise stacking by the polarization charges attraction between the printing material and the already printed materials on the substrate. In addition, considering the high-resolution and high-efficiency printing of various materials with different viscosities, we propose two working modes, including the pulsed cone-jet mode and the continuous cone-jet mode. To prove the advantages and features of the proposed method, we carried out a series of research work systematically. Firstly, the printing mechanism is revealed through theoretical analysis and numerical simulation. The higher the conductivity of the single-plate electrode is and the lower the conductivity of the nozzle is, the greater the electric field intensity is. Then, the feasibility of printing with the nozzle (conductive steel nozzle and non-conductive glass nozzle), substrate (conductive copper plate, semiconductor silicon wafer, and insulating glass plate), and printing material (conductive silver paste and non-conductive polymer) has been verified by systematic experiments. Finally, three typical cases, micro “wall” structure of polylactic acid (PLA) with a line width of 1.139 μm and a high aspect ratio of 46.8:1, high-performance (transmittance of 90.17% and sheet resistance of 4.26 Ω/sq) transparent electrode made of high viscosity silver paste, and multi-layer 3D scaffold with a line width of 20 µm and a total height of 200 µm, have been printed successfully. The new method has been proved to have unique technical advantages in high-resolution printing, multi-material, and macro/micro multi-scale printing. Therefore, it provides a new solution with low cost and high universality for micro/nano-scale additive manufacturing and macro/micro cross scale 3D printing, especially in the field of biological tissue engineering and printing electronics.


科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助大熊采纳,获得10
13秒前
科研通AI6应助大熊采纳,获得10
27秒前
赘婿应助落后博采纳,获得10
28秒前
雨竹完成签到,获得积分10
28秒前
isak发布了新的文献求助10
38秒前
44秒前
46秒前
isak完成签到,获得积分10
48秒前
48秒前
大熊发布了新的文献求助10
52秒前
1分钟前
1分钟前
ZZZ发布了新的文献求助10
1分钟前
大熊发布了新的文献求助10
1分钟前
大熊完成签到 ,获得积分10
1分钟前
1分钟前
lilin完成签到 ,获得积分20
2分钟前
2分钟前
2分钟前
ZZZ完成签到,获得积分10
2分钟前
momo发布了新的文献求助10
3分钟前
Timelapse应助诚心山灵采纳,获得10
3分钟前
3分钟前
ding应助科研通管家采纳,获得10
3分钟前
灵巧的代芙完成签到 ,获得积分10
3分钟前
科目三应助顺利的边牧采纳,获得10
3分钟前
紫苏发布了新的文献求助10
3分钟前
4分钟前
4分钟前
notfound发布了新的文献求助10
4分钟前
4分钟前
5分钟前
甜甜纸飞机完成签到 ,获得积分10
5分钟前
Eileen完成签到 ,获得积分0
5分钟前
甜甜的紫菜完成签到 ,获得积分10
5分钟前
5分钟前
xiaozou55完成签到 ,获得积分10
6分钟前
6分钟前
ajing完成签到,获得积分10
7分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5564965
求助须知:如何正确求助?哪些是违规求助? 4649714
关于积分的说明 14689286
捐赠科研通 4591604
什么是DOI,文献DOI怎么找? 2519322
邀请新用户注册赠送积分活动 1491903
关于科研通互助平台的介绍 1462973