生物相容性
材料科学
模拟体液
生物医学工程
骨组织
化学工程
组织工程
药物输送
成骨细胞
复合数
纳米技术
化学
扫描电子显微镜
石墨烯
复合材料
体外
医学
生物化学
冶金
工程类
作者
Yashaswini Devi,Ashwini Prabhu,Sukumaran Anil,Jayachandran Venkatesan
标识
DOI:10.1016/j.jddst.2021.102624
摘要
Abstract Over 2.2 million bone graft transplantations are performed by clinicians worldwide annually. The development of synthetic bone graft substitute for the treatment of bone defects is still an utmost challenge in bone tissue engineering. In the current study, we have fabricated calcium ion cross-linked alginate (Alg), alginate-graphene oxide (Alg-GO) and alginate-graphene oxide-dexamethasone (Alg-GO-Dex) composite microspheres as an alternative bone graft substitute. Various properties of developed microspheres were investigated using appropriate characterization tools including Fourier transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy combined with energy dispersive X-ray diffraction. In vitro biomineralization study was performed using simulated body fluid (SBF) solution. Biocompatibility of the developed microspheres was studied with osteoblast-like cells (MG-63). The developed microspheres showed more than 80% of porosity and dispersion of GO in the alginate matrix was uniform. The size of developed microspheres is in the range of 1.5 ± 0.5 mm, and Dex drug was released from the microspheres in sustainable manner. Excellent apatite formation was observed on the surface of the microspheres using SBF solution which is useful for bone tissue regeneration. In vitro studies using osteoblast like MG-63 cells revealed profound biocompatibility. Thus, the developed Alg-GO-Dex composite microspheres have potential applications in drug delivery system towards bone tissue engineering applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI