An integrated AI model to improve diagnostic accuracy of ultrasound and output known risk features in suspicious thyroid nodules

医学 神经组阅片室 放射科 超声波 甲状腺结节 介入放射学 甲状腺癌 甲状腺 组织病理学 病理 内科学 精神科 神经学
作者
Juan Wang,Jue Jiang,Dong Zhang,Yaozhong Zhang,Long Guo,Yusheng Jiang,Shaoyi Du,Qi Zhou
出处
期刊:European Radiology [Springer Nature]
卷期号:32 (3): 2120-2129 被引量:26
标识
DOI:10.1007/s00330-021-08298-7
摘要

From the viewpoint of ultrasound (US) physicians, an ideal thyroid US computer-assisted diagnostic (CAD) system for thyroid cancer should perform well in suspicious thyroid nodules with atypical risk features and be able to output explainable results. This study aims to develop an explainable US CAD model for suspicious thyroid nodules.A total of 2992 solid or almost-solid thyroid nodules were analyzed retrospectively. All nodules had pathological results (1070 malignancies and 1992 benignities) confirmed by ultrasound-guided fine-needle aspiration cytology and histopathology after thyroidectomy. A deep learning model (ResNet50) and a multiple risk features learning ensemble model (XGBoost) were used to train the US images of 2794 thyroid nodules. Then, an integrated AI model was generated by combining both models. The diagnostic accuracies of the three AI models (ResNet50, XGBoost, and the integrated model) were predicted in a testing set including 198 thyroid nodules and compared to the diagnostic efficacy of five ultrasonographers.The accuracy of the integrated model was 76.77%, while the mean accuracy of the ultrasonographers was 68.38%. Of the risk features, microcalcifications showed the highest contribution to the diagnosis of malignant nodules.The integrated AI model in our study can improve the diagnostic accuracy of suspicious thyroid nodules and output the known risk features simultaneously, thus aiding in training young ultrasonographers by linking the explainable results to their clinical experience and advancing the acceptance of AI diagnosis for thyroid cancer in clinical practice.• We developed an artificial intelligence (AI) diagnosis model based on both deep learning and multiple risk feature ensemble learning methods. • The AI diagnosis model showed higher diagnostic accuracy for suspicious thyroid nodules than ultrasonographers. • The AI diagnosis model showed partial explainability by outputting the known risk features, thus aiding young ultrasonic doctors in increasing the diagnostic level for thyroid cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
1點點cui完成签到,获得积分10
3秒前
Hello应助不爱胡椒采纳,获得10
3秒前
会游泳的思维应助罗是一采纳,获得10
4秒前
背后归尘完成签到,获得积分10
4秒前
1點點cui发布了新的文献求助10
6秒前
7秒前
93发布了新的文献求助10
8秒前
罗是一完成签到,获得积分10
10秒前
rong应助如沐采纳,获得10
11秒前
12秒前
Yangzx发布了新的文献求助10
13秒前
suuummmer完成签到,获得积分10
15秒前
怎么说应助1點點cui采纳,获得10
15秒前
18秒前
19秒前
桐桐应助saikun采纳,获得10
19秒前
Executor完成签到,获得积分10
19秒前
风趣丝发布了新的文献求助10
22秒前
Jiang应助zz采纳,获得20
22秒前
22秒前
23秒前
小冉发布了新的文献求助10
25秒前
森sen完成签到 ,获得积分10
25秒前
酷波er应助欣喜成仁采纳,获得10
26秒前
XiYao发布了新的文献求助10
28秒前
桃子发布了新的文献求助10
29秒前
阿诺发布了新的文献求助10
31秒前
31秒前
Jasper应助XiYao采纳,获得10
32秒前
32秒前
天天快乐应助Nayuta48采纳,获得10
32秒前
材料诚完成签到,获得积分10
32秒前
33秒前
34秒前
彭于晏应助桃子采纳,获得10
35秒前
蠢蠢的死法完成签到,获得积分10
35秒前
spngebob94完成签到,获得积分10
37秒前
X7完成签到,获得积分10
37秒前
saikun发布了新的文献求助10
38秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Cognitive linguistics critical concepts in linguistics 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3053642
求助须知:如何正确求助?哪些是违规求助? 2710842
关于积分的说明 7423746
捐赠科研通 2355391
什么是DOI,文献DOI怎么找? 1247143
科研通“疑难数据库(出版商)”最低求助积分说明 606239
版权声明 595992