An integrated AI model to improve diagnostic accuracy of ultrasound and output known risk features in suspicious thyroid nodules

医学 神经组阅片室 放射科 超声波 甲状腺结节 介入放射学 甲状腺癌 甲状腺 组织病理学 病理 内科学 神经学 精神科
作者
Juan Wang,Jue Jiang,Dong Zhang,Yaozhong Zhang,Long Guo,Yusheng Jiang,Shaoyi Du,Qi Zhou
出处
期刊:European Radiology [Springer Nature]
卷期号:32 (3): 2120-2129 被引量:27
标识
DOI:10.1007/s00330-021-08298-7
摘要

From the viewpoint of ultrasound (US) physicians, an ideal thyroid US computer-assisted diagnostic (CAD) system for thyroid cancer should perform well in suspicious thyroid nodules with atypical risk features and be able to output explainable results. This study aims to develop an explainable US CAD model for suspicious thyroid nodules.A total of 2992 solid or almost-solid thyroid nodules were analyzed retrospectively. All nodules had pathological results (1070 malignancies and 1992 benignities) confirmed by ultrasound-guided fine-needle aspiration cytology and histopathology after thyroidectomy. A deep learning model (ResNet50) and a multiple risk features learning ensemble model (XGBoost) were used to train the US images of 2794 thyroid nodules. Then, an integrated AI model was generated by combining both models. The diagnostic accuracies of the three AI models (ResNet50, XGBoost, and the integrated model) were predicted in a testing set including 198 thyroid nodules and compared to the diagnostic efficacy of five ultrasonographers.The accuracy of the integrated model was 76.77%, while the mean accuracy of the ultrasonographers was 68.38%. Of the risk features, microcalcifications showed the highest contribution to the diagnosis of malignant nodules.The integrated AI model in our study can improve the diagnostic accuracy of suspicious thyroid nodules and output the known risk features simultaneously, thus aiding in training young ultrasonographers by linking the explainable results to their clinical experience and advancing the acceptance of AI diagnosis for thyroid cancer in clinical practice.• We developed an artificial intelligence (AI) diagnosis model based on both deep learning and multiple risk feature ensemble learning methods. • The AI diagnosis model showed higher diagnostic accuracy for suspicious thyroid nodules than ultrasonographers. • The AI diagnosis model showed partial explainability by outputting the known risk features, thus aiding young ultrasonic doctors in increasing the diagnostic level for thyroid cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dksido完成签到,获得积分10
1秒前
兰博基尼奥完成签到,获得积分10
1秒前
热情芷荷发布了新的文献求助10
3秒前
random完成签到,获得积分10
4秒前
4秒前
果果瑞宁完成签到,获得积分10
4秒前
5秒前
机智小虾米完成签到,获得积分20
5秒前
goldenfleece完成签到,获得积分10
6秒前
科研通AI2S应助学者采纳,获得10
6秒前
小杨完成签到,获得积分10
7秒前
sutharsons应助科研通管家采纳,获得30
8秒前
8秒前
Ava应助科研通管家采纳,获得10
8秒前
慕青应助科研通管家采纳,获得10
8秒前
所所应助科研通管家采纳,获得10
8秒前
在水一方应助科研通管家采纳,获得10
8秒前
小蘑菇应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得30
8秒前
传奇3应助科研通管家采纳,获得10
8秒前
科目三应助科研通管家采纳,获得10
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
CipherSage应助科研通管家采纳,获得30
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
Eric_Lee2000应助科研通管家采纳,获得10
8秒前
斯文败类应助科研通管家采纳,获得10
8秒前
8秒前
王子完成签到,获得积分10
9秒前
李繁蕊发布了新的文献求助10
10秒前
诚心的大碗应助明理念桃采纳,获得20
10秒前
11秒前
meng完成签到,获得积分10
11秒前
学者完成签到,获得积分10
11秒前
英俊的铭应助愉快盼曼采纳,获得10
12秒前
12秒前
小媛完成签到 ,获得积分10
13秒前
学术小白完成签到,获得积分20
13秒前
赘婿应助xiaomeng采纳,获得10
13秒前
Khr1stINK发布了新的文献求助10
13秒前
清新的苑博完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808