Predicting subcellular location of protein with evolution information and sequence-based deep learning

水准点(测量) 计算机科学 人工智能 蛋白质测序 排名(信息检索) 卷积神经网络 序列(生物学) 机器学习 深度学习 人工神经网络 亚细胞定位 数据挖掘 模式识别(心理学) 肽序列 生物 基因 遗传学 地理 大地测量学
作者
Zhijun Liao,Gaofeng Pan,Chao Sun,Jijun Tang
出处
期刊:BMC Bioinformatics [BioMed Central]
卷期号:22 (S10) 被引量:7
标识
DOI:10.1186/s12859-021-04404-0
摘要

Protein subcellular localization prediction plays an important role in biology research. Since traditional methods are laborious and time-consuming, many machine learning-based prediction methods have been proposed. However, most of the proposed methods ignore the evolution information of proteins. In order to improve the prediction accuracy, we present a deep learning-based method to predict protein subcellular locations.Our method utilizes not only amino acid compositions sequence but also evolution matrices of proteins. Our method uses a bidirectional long short-term memory network that processes the entire protein sequence and a convolutional neural network that extracts features from protein sequences. The position specific scoring matrix is used as a supplement to protein sequences. Our method was trained and tested on two benchmark datasets. The experiment results show that our method yields accurate results on the two datasets with an average precision of 0.7901, ranking loss of 0.0758 and coverage of 1.2848.The experiment results show that our method outperforms five methods currently available. According to those experiments, we can see that our method is an acceptable alternative to predict protein subcellular location.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ggbond完成签到 ,获得积分10
1秒前
1秒前
1秒前
威武画板发布了新的文献求助10
2秒前
领导范儿应助科研通管家采纳,获得10
3秒前
粥粥应助科研通管家采纳,获得10
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
大个应助科研通管家采纳,获得30
4秒前
修士阿贤发布了新的文献求助10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
大个应助科研通管家采纳,获得10
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得10
4秒前
充电宝应助科研通管家采纳,获得80
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
今后应助科研通管家采纳,获得10
4秒前
李健的小迷弟应助古芍昂采纳,获得10
4秒前
kang发布了新的文献求助10
5秒前
兰彻完成签到,获得积分10
5秒前
ZCP发布了新的文献求助10
5秒前
yitongyao完成签到,获得积分20
5秒前
木马上市发布了新的文献求助10
5秒前
zihanwang应助耀阳采纳,获得10
5秒前
小马甲应助彩色的沛凝采纳,获得10
6秒前
笑点低凡桃完成签到,获得积分10
7秒前
dong应助zpp采纳,获得10
7秒前
852应助王富贵采纳,获得10
7秒前
10秒前
wanci应助xianer采纳,获得10
10秒前
10秒前
12秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998752
求助须知:如何正确求助?哪些是违规求助? 3538216
关于积分的说明 11273702
捐赠科研通 3277200
什么是DOI,文献DOI怎么找? 1807436
邀请新用户注册赠送积分活动 883893
科研通“疑难数据库(出版商)”最低求助积分说明 810075