Obesity Measures as Predictors of Type 2 Diabetes and Cardiovascular Diseases among the Jordanian Population: A Cross-Sectional Study

医学 体质指数 腰围 肥胖 横断面研究 2型糖尿病 人口 逻辑回归 人口学 内科学 糖尿病 环境卫生 内分泌学 病理 社会学
作者
Hana Alkhalidy,Aliaa Orabi,Khadeejah Alnaser,Islam Al-Shami,Tamara Alzboun,Mohammad D. Obeidat,Dongmin Liu
出处
期刊:International Journal of Environmental Research and Public Health [MDPI AG]
卷期号:18 (22): 12187-12187 被引量:2
标识
DOI:10.3390/ijerph182212187
摘要

Obesity is strongly associated with cardiovascular diseases (CVD) and type 2 diabetes (T2D). This study aimed to use obesity measures, body mass index (BMI) and waist circumference (WC) to predict the CVD and T2D risk and to determine the best predictor of these diseases among Jordanian adults. A cross-sectional study was conducted at the governmental and military hospitals across Jordan. The study participants were healthy or previously diagnosed with CVD or T2D. The continuous variables were compared using ANOVA, and the categorical variables were compared using the X2 test. The multivariate logistic regression was used to predict CVD and T2D risk through their association with BMI and WC. The final sample consisted of 6000 Jordanian adults with a mean age of 41.5 ± 14.7 years, 73.6% females. The BMI (OR = 1.7, CI: 1.30-2.30, p < 0.001) was associated with a higher risk of T2D compared to WC (OR = 1.3, CI: 1.04-1.52, p = 0.016). However, our results showed that BMI was not associated with CVD risk, while the WC was significantly and positively associated with CVD risk (OR = 1.9, CI: 1.47-2.47, p < 0.001). In conclusion, an elevated BMI predicts a higher risk of T2D, while WC is more efficient in predicting CVD risk. Our results can be used to construct a population-specific intervention to reduce the risk of CVD and T2D among adults in Jordan and other countries with similar backgrounds.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明礼A完成签到,获得积分10
1秒前
1秒前
lavender发布了新的文献求助10
1秒前
bkagyin应助HHZ采纳,获得10
1秒前
2秒前
不倒翁发布了新的文献求助10
3秒前
he完成签到,获得积分10
3秒前
4秒前
dongqing12311完成签到,获得积分10
4秒前
6秒前
he发布了新的文献求助10
6秒前
zoey完成签到,获得积分10
6秒前
虚拟的乐萱完成签到,获得积分10
6秒前
Aether发布了新的文献求助10
7秒前
7秒前
liu完成签到,获得积分10
8秒前
sci2025opt完成签到 ,获得积分10
8秒前
9秒前
GRX1110发布了新的文献求助10
11秒前
卡卡完成签到 ,获得积分10
12秒前
Ada发布了新的文献求助10
13秒前
沉默念瑶发布了新的文献求助10
13秒前
13秒前
小小垚发布了新的文献求助10
13秒前
桑榆2完成签到,获得积分10
13秒前
13秒前
思源应助吴啊采纳,获得10
15秒前
15秒前
15秒前
英姑应助虚拟的乐萱采纳,获得10
16秒前
CodeCraft应助HHZ采纳,获得10
18秒前
18秒前
清飞完成签到,获得积分10
19秒前
sevenhill应助拼搏煎蛋采纳,获得10
20秒前
多多发布了新的文献求助10
20秒前
王359发布了新的文献求助10
20秒前
咚咚完成签到,获得积分20
21秒前
许译匀完成签到,获得积分10
21秒前
21秒前
搞怪路灯发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5605746
求助须知:如何正确求助?哪些是违规求助? 4690350
关于积分的说明 14863110
捐赠科研通 4702499
什么是DOI,文献DOI怎么找? 2542243
邀请新用户注册赠送积分活动 1507853
关于科研通互助平台的介绍 1472142