Geometry and boundary condition adaptive data-driven model of fluid flow based on deep convolutional neural networks

卷积神经网络 转置 算法 联营 深度学习 边界(拓扑) 二进制数 基质(化学分析) 物理 人工智能 模式识别(心理学) 计算机科学 数学分析 数学 算术 量子力学 特征向量 复合材料 材料科学
作者
Jiang-Zhou Peng,Nadine Aubry,Shiquan Zhu,Zhihua Chen,Wei‐Tao Wu
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:33 (12) 被引量:36
标识
DOI:10.1063/5.0073419
摘要

We develop a deep neural network-based reduced-order model (ROM) for rapid prediction of the steady-state velocity field with arbitrary geometry and various boundary conditions. The input matrix of the network is composed of the nearest wall signed distance function (NWSDF), which contains more physical information than the signed distance function (SDF) and binary map; the boundary conditions are represented by specifically designed values and fused with NWSDF. The network architecture comprises convolutional and transpose-convolutional layers, and convolutional layers are employed to encode and extract the physical information from NWSDF. The highly encoded information is decoded by transpose-convolutional layers to estimate the velocity fields. Furthermore, we introduce a pooling layer to innovatively emphasize/preserve information of boundary conditions, which are gradually flooded by other features during the convolutional operation. The network model is trained using several simple geometries and tested with more complex cases. The proposed network model shows excellent adaptability to arbitrary complex geometry and variable boundary conditions. The average prediction error of the network model on the testing dataset is less than 6%, and the prediction speed is two orders faster than that of the numerical simulation. In contrast to the current model, the average error of the network model with the input matrix of the binary map, traditional SDF, and model without pooling layers is around 12%, 11%, and 11%, respectively. The outstanding performance of the proposed network model indicates the potential of the deep neural network-based ROM for real-time control and rapid optimization, while encouraging further investigation to achieve practical application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清爽乐菱应助苏卿采纳,获得30
1秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
天天发布了新的文献求助50
7秒前
小橘子发布了新的文献求助10
8秒前
9秒前
酷波er应助YoursSummer采纳,获得10
9秒前
若水完成签到,获得积分10
11秒前
11秒前
饼饼发布了新的文献求助10
12秒前
我是老大应助糟糕的铁锤采纳,获得50
14秒前
情怀应助满意的盼夏采纳,获得10
15秒前
核桃应助研友_xnEOX8采纳,获得60
16秒前
17秒前
yar应助WD采纳,获得10
19秒前
小白完成签到,获得积分10
22秒前
雯子完成签到,获得积分10
25秒前
25秒前
27秒前
29秒前
北彧发布了新的文献求助10
30秒前
33秒前
小二郎应助cheers采纳,获得10
33秒前
33秒前
36秒前
天天发布了新的文献求助50
37秒前
烧炭匠完成签到,获得积分10
41秒前
杨自强发布了新的文献求助10
41秒前
42秒前
CAOHOU应助wsf2023采纳,获得10
43秒前
秃头钙钛矿完成签到,获得积分10
43秒前
maomao发布了新的文献求助10
44秒前
45秒前
大模型应助坚强慕蕊采纳,获得10
46秒前
梁小氓完成签到 ,获得积分10
47秒前
11完成签到 ,获得积分10
47秒前
Akim应助科研通管家采纳,获得10
47秒前
完美世界应助科研通管家采纳,获得10
47秒前
47秒前
科研通AI5应助科研通管家采纳,获得30
47秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979704
求助须知:如何正确求助?哪些是违规求助? 3523679
关于积分的说明 11218338
捐赠科研通 3261196
什么是DOI,文献DOI怎么找? 1800490
邀请新用户注册赠送积分活动 879113
科研通“疑难数据库(出版商)”最低求助积分说明 807182