Geometry and boundary condition adaptive data-driven model of fluid flow based on deep convolutional neural networks

卷积神经网络 转置 算法 联营 深度学习 边界(拓扑) 二进制数 基质(化学分析) 物理 人工智能 模式识别(心理学) 计算机科学 数学分析 数学 特征向量 材料科学 算术 量子力学 复合材料
作者
Jiang-Zhou Peng,Nadine Aubry,Shiquan Zhu,Zhihua Chen,Wei‐Tao Wu
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:33 (12) 被引量:36
标识
DOI:10.1063/5.0073419
摘要

We develop a deep neural network-based reduced-order model (ROM) for rapid prediction of the steady-state velocity field with arbitrary geometry and various boundary conditions. The input matrix of the network is composed of the nearest wall signed distance function (NWSDF), which contains more physical information than the signed distance function (SDF) and binary map; the boundary conditions are represented by specifically designed values and fused with NWSDF. The network architecture comprises convolutional and transpose-convolutional layers, and convolutional layers are employed to encode and extract the physical information from NWSDF. The highly encoded information is decoded by transpose-convolutional layers to estimate the velocity fields. Furthermore, we introduce a pooling layer to innovatively emphasize/preserve information of boundary conditions, which are gradually flooded by other features during the convolutional operation. The network model is trained using several simple geometries and tested with more complex cases. The proposed network model shows excellent adaptability to arbitrary complex geometry and variable boundary conditions. The average prediction error of the network model on the testing dataset is less than 6%, and the prediction speed is two orders faster than that of the numerical simulation. In contrast to the current model, the average error of the network model with the input matrix of the binary map, traditional SDF, and model without pooling layers is around 12%, 11%, and 11%, respectively. The outstanding performance of the proposed network model indicates the potential of the deep neural network-based ROM for real-time control and rapid optimization, while encouraging further investigation to achieve practical application.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wen完成签到,获得积分10
2秒前
上官若男应助Xx采纳,获得10
3秒前
bing完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
5秒前
番茄大王开心心完成签到 ,获得积分10
6秒前
Dali应助元谷雪采纳,获得10
7秒前
研友_knggYn完成签到,获得积分0
7秒前
69qq发布了新的文献求助30
7秒前
sam完成签到,获得积分10
7秒前
7秒前
XiaoMaomi完成签到,获得积分10
9秒前
songyl完成签到,获得积分10
12秒前
小齐怪完成签到,获得积分20
12秒前
脆啵啵马克宝完成签到 ,获得积分10
15秒前
暄暄发布了新的文献求助10
15秒前
Andy完成签到,获得积分10
15秒前
干净的雅青完成签到,获得积分10
16秒前
Biofly526完成签到,获得积分10
16秒前
17秒前
20秒前
dengdeng发布了新的文献求助10
20秒前
楼北完成签到,获得积分0
21秒前
明明就完成签到 ,获得积分10
21秒前
冷傲凝琴完成签到,获得积分10
22秒前
严锦强完成签到,获得积分10
23秒前
deng完成签到 ,获得积分10
24秒前
24秒前
Ch_7完成签到,获得积分10
24秒前
cc完成签到,获得积分10
25秒前
FashionBoy应助dengdeng采纳,获得10
26秒前
文静的行恶完成签到,获得积分10
26秒前
汉堡包应助大力惜海采纳,获得10
29秒前
傲娇的咖啡豆完成签到,获得积分10
31秒前
舒心完成签到,获得积分10
35秒前
宇文数学完成签到,获得积分10
36秒前
一兜哇完成签到 ,获得积分10
37秒前
Dali应助元谷雪采纳,获得10
37秒前
顺利打开今日易开工完成签到,获得积分10
37秒前
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603532
求助须知:如何正确求助?哪些是违规求助? 4688515
关于积分的说明 14854133
捐赠科研通 4693329
什么是DOI,文献DOI怎么找? 2540799
邀请新用户注册赠送积分活动 1507041
关于科研通互助平台的介绍 1471806