过电位
钌
塔菲尔方程
氢
化学
结合能
催化作用
基质(水族馆)
电化学
合金
结晶学
材料科学
物理化学
原子物理学
电极
有机化学
地质学
物理
海洋学
生物化学
作者
Chao Cai,Kang Liu,Yuanmin Zhu,Pengcheng Li,Qiyou Wang,Bao Liu,Shanyong Chen,Huangjingwei Li,Li Zhu,Hongmei Li,Junwei Fu,Yu Chen,Evangelina Pensa,Junhua Hu,Ying–Rui Lu,Ting‐Shan Chan,Emiliano Cortés,Min Liu
标识
DOI:10.1002/anie.202113664
摘要
Ruthenium (Ru)-based catalysts, with considerable performance and desirable cost, are becoming highly interesting candidates to replace platinum (Pt) in the alkaline hydrogen evolution reaction (HER). The hydrogen binding at Ru sites (Ru-H) is an important factor limiting the HER activity. Herein, density functional theory (DFT) simulations show that the essence of Ru-H binding energy is the strong interaction between the 4dz2 orbital of Ru and the 1s orbital of H. The charge transfer between Ru sites and substrates (Co and Ni) causes the appropriate downward shift of the 4dz2 -band center of Ru, which results in a Gibbs free energy of 0.022 eV for H* in the RuCo system, much lower than the 0.133 eV in the pure Ru system. This theoretical prediction has been experimentally confirmed using RuCo alloy-nanosheets (RuCo ANSs). They were prepared via a fast co-precipitation method followed with a mild electrochemical reduction. Structure characterizations reveal that the Ru atoms are embedded into the Co substrate as isolated active sites with a planar symmetric and Z-direction asymmetric coordination structure, obtaining an optimal 4dz2 modulated electronic structure. Hydrogen sensor and temperature program desorption (TPD) tests demonstrate the enhanced Ru-H interactions in RuCo ANSs compared to those in pure Ru nanoparticles. As a result, the RuCo ANSs reach an ultra-low overpotential of 10 mV at 10 mA cm-2 and a Tafel slope of 20.6 mV dec-1 in 1 M KOH, outperforming that of the commercial Pt/C. This holistic work provides a new insight to promote alkaline HER by optimizing the metal-H binding energy of active sites.
科研通智能强力驱动
Strongly Powered by AbleSci AI