岩土工程
直剪试验
变形(气象学)
剪切(地质)
地质学
材料科学
单剪
复合材料
作者
Quan Jiang,Yao Yang,Fei Yan,Junbo Zhou,Shaojun Li,Bing Yang,Hong Zheng
标识
DOI:10.1016/j.conbuildmat.2021.123468
摘要
The shearing performance and strength of the interface between rock foundations and structural concrete is a key issue for safety estimation in geotechnical engineering containing rock-concrete interface. In this paper, we focused on the effects of concrete wall strength and normal stress on the unbonding performances of sandstone-concrete interface. First, many sandstone-concrete specimens containing a natural dam bedrock interface had been produced by using “3D optical scanning technology + 3D digital engraving technology + pouring concrete” method. Subsequently, after the sandstone-concrete specimens were prepared, a series of shear tests for these sandstone-concrete specimens were carried out under different normal loading conditions. Finally, the shear characteristics of sandstone-concrete interface were discussed, and an improved rock-concrete shear strength formula was proposed based on the exposed experimental tests and theoretical derivation. Three primary outcomes are as follows: (i) shear damage only occurred at some special positions of the concrete wall, and its degree of shear damage gradually increased with increasing normal stress; (ii) the damage degree of the concrete surface performed obvious localization and nonuniformity was affected by the concrete strength; (iii) the global shear strength and residual strength of the rock-concrete interface were affected by the concrete strength and the normal load. Moreover, an improved rock-concrete shear strength formula was proposed based on the experimental cognition. This strength formula considers both the interface roughness and the mechanical strength of rock/concrete materials, and is more reasonable for estimating the shear strength of rock-concrete interfaces in geotechnical engineering.
科研通智能强力驱动
Strongly Powered by AbleSci AI