Reshaping two-dimensional MoS2 for superior magnesium-ion battery anodes

阳极 二硫化钼 电池(电) 单层 电子转移 离子 材料科学 电极 化学物理 金属 化学工程 纳米技术 化学 冶金 物理 复合材料 物理化学 热力学 有机化学 工程类 功率(物理)
作者
Donghai Wu,Baocheng Yang,Shouren Zhang,Eli Ruckenstein,Houyang Chen
出处
期刊:Journal of Colloid and Interface Science [Elsevier]
卷期号:597: 401-408 被引量:21
标识
DOI:10.1016/j.jcis.2021.04.002
摘要

Few-atom-thick two-dimensional (2D) molybdenum disulfide (MoS 2 ) monolayers possess numerous crucial applications in energy storage. Usually, the strategy of activating interfacial electron transfer was employed to promote their performance. Herein, we reshape the structure of materials to excite their subinterfacial and interfacial electron transfer for superior metal-ion batteries. As an example, we rationally design and reconfigure the structure of 2D MoS 2 and propose a new stable structure, B-MoS 2 , which has an S–Mo–S sandwich structure with a buckled square lattice. The B-MoS 2 monolayer is a promising anode material for magnesium-ion batteries (MgIBs) with a high capacity (921.3 mA h g −1 ) and a low averaged open circuit voltage (0.154 V). Multiscale underlying mechanisms for the storage of Mg and Li ions in MoS 2 are provided. Based on the electronic level, the high capacity is ascribed to the occurrence of interfacial and subinterfacial electron transfer between metal ions and B-MoS 2 . Based on the atomic level, the insertion-adsorption mechanism or adsorption-insertion mechanism is determined for different ion storage at B-MoS 2 . The intrinsic metallic property of B-MoS 2 and the enhanced electronic conductivity of Mg/B-MoS 2 systems as well as low migration barriers (∼0.604 eV) of Mg ions at MoS 2 suggest that the B-MoS 2 anode has fast charge/discharge rates. This work offers novel concepts (i.e. subinterfacial electron transfer and its activation) for superior energy storage materials, and proposes new multiscale underlying mechanisms for ion storage in the MoS 2 family.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大意的绿蓉完成签到,获得积分10
刚刚
jerry完成签到,获得积分10
1秒前
犽ya关注了科研通微信公众号
3秒前
1548081774发布了新的文献求助10
3秒前
Wang完成签到,获得积分10
4秒前
星辰大海应助Suppose采纳,获得10
4秒前
卢雅妮发布了新的文献求助10
4秒前
李星云完成签到,获得积分10
4秒前
倩Q完成签到,获得积分10
4秒前
残月下的樱花完成签到,获得积分10
6秒前
18完成签到,获得积分10
6秒前
6秒前
YORLAN发布了新的文献求助10
7秒前
WENc发布了新的文献求助10
7秒前
60i发布了新的文献求助30
7秒前
7秒前
我是老大应助张超采纳,获得10
8秒前
8秒前
9秒前
安迪宝刚发布了新的文献求助10
9秒前
烂漫安珊完成签到,获得积分10
9秒前
11秒前
11秒前
kingwill应助zzz采纳,获得20
12秒前
烂漫安珊发布了新的文献求助10
14秒前
14秒前
Jenny应助完美晓瑶采纳,获得10
15秒前
123上发布了新的文献求助10
16秒前
16秒前
17秒前
17秒前
19秒前
123给123的求助进行了留言
20秒前
安达里士发布了新的文献求助10
23秒前
24秒前
迪丽热巴发布了新的文献求助50
24秒前
BREEZE发布了新的文献求助20
25秒前
科研通AI2S应助惊蕈采纳,获得20
26秒前
lulu完成签到,获得积分10
27秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3469901
求助须知:如何正确求助?哪些是违规求助? 3063149
关于积分的说明 9081549
捐赠科研通 2753389
什么是DOI,文献DOI怎么找? 1510844
邀请新用户注册赠送积分活动 698104
科研通“疑难数据库(出版商)”最低求助积分说明 698028