A novel polynomial reconstruction algorithm‐based 1D convolutional neural network used for transfer learning in Raman spectroscopy application

拉曼光谱 卷积神经网络 学习迁移 计算机科学 算法 数据集 试验装置 人工智能 校准 多项式的 分光计 模式识别(心理学) 试验数据 生物系统 数学 光学 物理 数学分析 统计 生物 程序设计语言
作者
Linwei Shang,Yilin Bao,Jinlan Tang,Dan‐Ying Ma,Juanjuan Fu,Yuan Zhao,Xiao Wang,Jianhua Yin
出处
期刊:Journal of Raman Spectroscopy [Wiley]
卷期号:53 (2): 237-246 被引量:3
标识
DOI:10.1002/jrs.6268
摘要

Abstract When a convolutional neural network (CNN) model was built, the size and resolution of its input data were fixed. However, Raman spectra collected by different Raman spectrometers usually had different length, intensity range, and wavenumber interval between two adjacent data points, which made the existing CNN model difficult to be applied to a new Raman spectral data set. Therefore, this paper proposed a polynomial reconstruction algorithm as pretreatment method to obtain reconstructed spectra that would be imported into CNN model with consistent length, intensity range, and wavenumber interval. To test the effectiveness of this method, a big data set with 2563 Raman spectra of 831 minerals and synthetic organic pigments samples was constructed from the RRUFF and SOP database to pretrain a one‐dimensional CNN (1D‐CNN) model. The pretraining results showed that polynomial reconstruction algorithm used as pretreatment method was better than SG smoothing combined spline interpolation algorithm. Then two data sets were collected by different Raman spectrometers for evaluating the transfer learning performance of the trained 1D‐CNN model. Both data sets contained 390 Raman spectra from the same 39 samples of inorganic salts, organic compounds, and amino acids. One was used as calibration data to retrain the 1D‐CNN model, while the other was used as test. Based on data augmentation and 75% calibration data for retraining, the transfer learning performances of 1D‐CNN model were clearly shown in the excellent identification accuracies of 99.58%, 99.32%, and 97.69% for training, validation, and test sets, respectively, which were better than those of K‐nearest neighbor classifier. This paper provides a significant way for the wide application of CNN model in Raman spectroscopy with much more advantages in simplicity and rapidity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
专注大门完成签到,获得积分10
1秒前
1秒前
花非花雾非雾完成签到,获得积分10
1秒前
Lynn发布了新的文献求助10
2秒前
majiko完成签到,获得积分10
2秒前
3秒前
3秒前
共享精神应助静85采纳,获得10
3秒前
宇宙少女完成签到,获得积分10
3秒前
4秒前
4秒前
5秒前
5秒前
5秒前
乔垣结衣发布了新的文献求助10
6秒前
6秒前
顾矜应助鳗鱼飞松采纳,获得10
6秒前
跳跳妈妈发布了新的文献求助30
7秒前
7秒前
lanxixi完成签到,获得积分10
7秒前
sc完成签到,获得积分10
7秒前
清河海风完成签到,获得积分10
7秒前
naturehome完成签到,获得积分10
8秒前
8秒前
小蘑菇应助124578采纳,获得10
8秒前
shirley完成签到,获得积分10
8秒前
mumu发布了新的文献求助10
9秒前
Link完成签到,获得积分20
9秒前
yar应助可爱香槟采纳,获得10
9秒前
Hello应助东风采纳,获得10
9秒前
蟹浦肉完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
Link发布了新的文献求助30
10秒前
10秒前
Sakura完成签到,获得积分20
11秒前
不安灵竹关注了科研通微信公众号
12秒前
12秒前
赵嘉钰发布了新的文献求助10
12秒前
凌晨幻舞发布了新的文献求助10
12秒前
13秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978526
求助须知:如何正确求助?哪些是违规求助? 3522634
关于积分的说明 11214133
捐赠科研通 3260065
什么是DOI,文献DOI怎么找? 1799744
邀请新用户注册赠送积分活动 878642
科研通“疑难数据库(出版商)”最低求助积分说明 807002