A novel polynomial reconstruction algorithm‐based 1D convolutional neural network used for transfer learning in Raman spectroscopy application

拉曼光谱 卷积神经网络 学习迁移 计算机科学 算法 数据集 试验装置 人工智能 校准 多项式的 分光计 模式识别(心理学) 试验数据 生物系统 数学 光学 物理 数学分析 统计 生物 程序设计语言
作者
Linwei Shang,Yilin Bao,Jinlan Tang,Dan‐Ying Ma,Juanjuan Fu,Yuan Zhao,Xiao Wang,Jianhua Yin
出处
期刊:Journal of Raman Spectroscopy [Wiley]
卷期号:53 (2): 237-246 被引量:3
标识
DOI:10.1002/jrs.6268
摘要

Abstract When a convolutional neural network (CNN) model was built, the size and resolution of its input data were fixed. However, Raman spectra collected by different Raman spectrometers usually had different length, intensity range, and wavenumber interval between two adjacent data points, which made the existing CNN model difficult to be applied to a new Raman spectral data set. Therefore, this paper proposed a polynomial reconstruction algorithm as pretreatment method to obtain reconstructed spectra that would be imported into CNN model with consistent length, intensity range, and wavenumber interval. To test the effectiveness of this method, a big data set with 2563 Raman spectra of 831 minerals and synthetic organic pigments samples was constructed from the RRUFF and SOP database to pretrain a one‐dimensional CNN (1D‐CNN) model. The pretraining results showed that polynomial reconstruction algorithm used as pretreatment method was better than SG smoothing combined spline interpolation algorithm. Then two data sets were collected by different Raman spectrometers for evaluating the transfer learning performance of the trained 1D‐CNN model. Both data sets contained 390 Raman spectra from the same 39 samples of inorganic salts, organic compounds, and amino acids. One was used as calibration data to retrain the 1D‐CNN model, while the other was used as test. Based on data augmentation and 75% calibration data for retraining, the transfer learning performances of 1D‐CNN model were clearly shown in the excellent identification accuracies of 99.58%, 99.32%, and 97.69% for training, validation, and test sets, respectively, which were better than those of K‐nearest neighbor classifier. This paper provides a significant way for the wide application of CNN model in Raman spectroscopy with much more advantages in simplicity and rapidity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
橘子海完成签到 ,获得积分10
7秒前
失眠的香蕉完成签到 ,获得积分10
19秒前
科研通AI2S应助FUNG采纳,获得10
21秒前
哈哈哈完成签到 ,获得积分10
21秒前
学术完成签到 ,获得积分10
22秒前
richard1357完成签到 ,获得积分10
22秒前
彭于晏应助JJ采纳,获得10
24秒前
chenbin完成签到,获得积分10
34秒前
36秒前
Chasing完成签到 ,获得积分10
36秒前
陈米花完成签到,获得积分10
38秒前
yyjl31完成签到,获得积分10
38秒前
Simon_chat完成签到,获得积分10
39秒前
Hank完成签到 ,获得积分10
39秒前
General完成签到 ,获得积分10
40秒前
吐司炸弹完成签到,获得积分10
41秒前
mayfly完成签到,获得积分10
41秒前
LT完成签到 ,获得积分10
41秒前
47秒前
玉鱼儿完成签到 ,获得积分10
50秒前
neal仰望应助文件撤销了驳回
50秒前
文耀海发布了新的文献求助10
51秒前
崩溃完成签到,获得积分10
54秒前
睡觉王完成签到 ,获得积分10
58秒前
李爱国应助天才小熊猫采纳,获得10
1分钟前
无情的聋五完成签到 ,获得积分20
1分钟前
1分钟前
JJ发布了新的文献求助10
1分钟前
小伊001完成签到,获得积分10
1分钟前
大呲花完成签到,获得积分10
1分钟前
迅速的念芹完成签到 ,获得积分10
1分钟前
JJ完成签到,获得积分10
1分钟前
小英完成签到 ,获得积分10
1分钟前
Raul完成签到 ,获得积分10
1分钟前
无为完成签到 ,获得积分10
1分钟前
大方的笑萍完成签到 ,获得积分10
1分钟前
Singularity完成签到,获得积分0
1分钟前
宸浅完成签到 ,获得积分10
1分钟前
jerry完成签到 ,获得积分10
1分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142849
求助须知:如何正确求助?哪些是违规求助? 2793684
关于积分的说明 7807147
捐赠科研通 2450016
什么是DOI,文献DOI怎么找? 1303576
科研通“疑难数据库(出版商)”最低求助积分说明 627016
版权声明 601350