A novel polynomial reconstruction algorithm‐based 1D convolutional neural network used for transfer learning in Raman spectroscopy application

拉曼光谱 卷积神经网络 学习迁移 计算机科学 算法 数据集 试验装置 人工智能 校准 多项式的 分光计 模式识别(心理学) 试验数据 生物系统 数学 光学 物理 数学分析 统计 生物 程序设计语言
作者
Linwei Shang,Yilin Bao,Jinlan Tang,Dan‐Ying Ma,Juanjuan Fu,Yuan Zhao,Xiao Wang,Jianhua Yin
出处
期刊:Journal of Raman Spectroscopy [Wiley]
卷期号:53 (2): 237-246 被引量:3
标识
DOI:10.1002/jrs.6268
摘要

Abstract When a convolutional neural network (CNN) model was built, the size and resolution of its input data were fixed. However, Raman spectra collected by different Raman spectrometers usually had different length, intensity range, and wavenumber interval between two adjacent data points, which made the existing CNN model difficult to be applied to a new Raman spectral data set. Therefore, this paper proposed a polynomial reconstruction algorithm as pretreatment method to obtain reconstructed spectra that would be imported into CNN model with consistent length, intensity range, and wavenumber interval. To test the effectiveness of this method, a big data set with 2563 Raman spectra of 831 minerals and synthetic organic pigments samples was constructed from the RRUFF and SOP database to pretrain a one‐dimensional CNN (1D‐CNN) model. The pretraining results showed that polynomial reconstruction algorithm used as pretreatment method was better than SG smoothing combined spline interpolation algorithm. Then two data sets were collected by different Raman spectrometers for evaluating the transfer learning performance of the trained 1D‐CNN model. Both data sets contained 390 Raman spectra from the same 39 samples of inorganic salts, organic compounds, and amino acids. One was used as calibration data to retrain the 1D‐CNN model, while the other was used as test. Based on data augmentation and 75% calibration data for retraining, the transfer learning performances of 1D‐CNN model were clearly shown in the excellent identification accuracies of 99.58%, 99.32%, and 97.69% for training, validation, and test sets, respectively, which were better than those of K‐nearest neighbor classifier. This paper provides a significant way for the wide application of CNN model in Raman spectroscopy with much more advantages in simplicity and rapidity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
WQ发布了新的文献求助10
刚刚
123完成签到,获得积分10
刚刚
KJ完成签到,获得积分10
刚刚
lilizi完成签到,获得积分10
刚刚
东少完成签到,获得积分10
1秒前
1秒前
傻傻的飞丹完成签到 ,获得积分10
1秒前
柏文鸽完成签到,获得积分10
1秒前
1秒前
Kiana完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助20
2秒前
大狼完成签到,获得积分10
2秒前
mufcyang完成签到,获得积分10
2秒前
samurai发布了新的文献求助10
2秒前
3秒前
Agnes发布了新的文献求助10
3秒前
pp发布了新的文献求助10
3秒前
哈哈哈哈完成签到,获得积分10
3秒前
大尾巴白发布了新的文献求助10
4秒前
4秒前
ocean完成签到,获得积分10
4秒前
郭6666完成签到,获得积分10
5秒前
llly发布了新的文献求助10
5秒前
沉默诗兰完成签到,获得积分10
5秒前
5秒前
zho发布了新的文献求助10
5秒前
科研人发布了新的文献求助10
6秒前
stoneff612发布了新的文献求助10
6秒前
7秒前
MarsXHXL发布了新的文献求助10
7秒前
栀尽夏完成签到,获得积分10
7秒前
无花果应助呼啦啦采纳,获得10
7秒前
7秒前
Yang完成签到,获得积分10
7秒前
萧东辰完成签到,获得积分10
7秒前
7秒前
活泼学生完成签到,获得积分10
7秒前
8秒前
Li完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017