拉曼光谱
卷积神经网络
学习迁移
计算机科学
算法
数据集
试验装置
人工智能
校准
多项式的
分光计
模式识别(心理学)
试验数据
生物系统
数学
光学
物理
数学分析
统计
生物
程序设计语言
作者
Linwei Shang,Yilin Bao,Jinlan Tang,Dan‐Ying Ma,Juanjuan Fu,Yuan Zhao,Xiao Wang,Jianhua Yin
摘要
Abstract When a convolutional neural network (CNN) model was built, the size and resolution of its input data were fixed. However, Raman spectra collected by different Raman spectrometers usually had different length, intensity range, and wavenumber interval between two adjacent data points, which made the existing CNN model difficult to be applied to a new Raman spectral data set. Therefore, this paper proposed a polynomial reconstruction algorithm as pretreatment method to obtain reconstructed spectra that would be imported into CNN model with consistent length, intensity range, and wavenumber interval. To test the effectiveness of this method, a big data set with 2563 Raman spectra of 831 minerals and synthetic organic pigments samples was constructed from the RRUFF and SOP database to pretrain a one‐dimensional CNN (1D‐CNN) model. The pretraining results showed that polynomial reconstruction algorithm used as pretreatment method was better than SG smoothing combined spline interpolation algorithm. Then two data sets were collected by different Raman spectrometers for evaluating the transfer learning performance of the trained 1D‐CNN model. Both data sets contained 390 Raman spectra from the same 39 samples of inorganic salts, organic compounds, and amino acids. One was used as calibration data to retrain the 1D‐CNN model, while the other was used as test. Based on data augmentation and 75% calibration data for retraining, the transfer learning performances of 1D‐CNN model were clearly shown in the excellent identification accuracies of 99.58%, 99.32%, and 97.69% for training, validation, and test sets, respectively, which were better than those of K‐nearest neighbor classifier. This paper provides a significant way for the wide application of CNN model in Raman spectroscopy with much more advantages in simplicity and rapidity.
科研通智能强力驱动
Strongly Powered by AbleSci AI