已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Improving efficiency of inference in clinical trials with external control data

估计员 推论 样本量测定 临床试验 因果推理 人口 计量经济学 计算机科学 随机对照试验 统计 数学 医学 人工智能 内科学 环境卫生
作者
Xinyu Li,Wang Miao,Fang Lu,Xiao-Hua Zhou
出处
期刊:Biometrics [Oxford University Press]
被引量:1
标识
DOI:10.1111/biom.13583
摘要

Suppose we are interested in the effect of a treatment in a clinical trial. The efficiency of inference may be limited due to small sample size. However, external control data are often available from historical studies. Motivated by an application to Helicobacter pylori infection, we show how to borrow strength from such data to improve efficiency of inference in the clinical trial. Under an exchangeability assumption about the potential outcome mean, we show that the semiparametric efficiency bound for estimating the average treatment effect can be reduced by incorporating both the clinical trial data and external controls. We then derive a doubly robust and locally efficient estimator. The improvement in efficiency is prominent especially when the external control dataset has a large sample size and small variability. Our method allows for a relaxed overlap assumption, and we illustrate with the case where the clinical trial only contains a treated group. We also develop doubly robust and locally efficient approaches that extrapolate the causal effect in the clinical trial to the external population and the overall population. Our results also offer a meaningful implication for trial design and data collection. We evaluate the finite-sample performance of the proposed estimators via simulation. In the Helicobacter pylori infection application, our approach shows that the combination treatment has potential efficacy advantages over the triple therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助杨亚轩采纳,获得10
刚刚
寇博翔发布了新的文献求助30
1秒前
传奇3应助益生菌小哥采纳,获得10
1秒前
积极松完成签到 ,获得积分10
2秒前
2秒前
4秒前
xinxin完成签到,获得积分10
6秒前
icecream完成签到,获得积分10
7秒前
7秒前
vicky完成签到,获得积分10
8秒前
mark707发布了新的文献求助50
8秒前
赘婿应助寇博翔采纳,获得10
9秒前
图图医关注了科研通微信公众号
13秒前
hhh完成签到 ,获得积分10
14秒前
16秒前
17秒前
6昂完成签到 ,获得积分10
19秒前
HMX发布了新的文献求助10
24秒前
图图医发布了新的文献求助10
25秒前
25秒前
26秒前
香蕉觅云应助玛卡巴卡采纳,获得10
27秒前
无心客应助玛卡巴卡采纳,获得10
27秒前
情怀应助玛卡巴卡采纳,获得10
27秒前
无心客应助玛卡巴卡采纳,获得10
27秒前
今后应助玛卡巴卡采纳,获得10
27秒前
无心客应助玛卡巴卡采纳,获得10
27秒前
Akim应助玛卡巴卡采纳,获得10
27秒前
酷波er应助玛卡巴卡采纳,获得10
28秒前
思源应助玛卡巴卡采纳,获得10
28秒前
充电宝应助玛卡巴卡采纳,获得10
28秒前
28秒前
健壮的思远完成签到,获得积分10
29秒前
天元神尊完成签到 ,获得积分10
29秒前
充电宝应助ddd采纳,获得10
30秒前
Alimove完成签到,获得积分10
30秒前
30秒前
WU发布了新的文献求助10
32秒前
深情安青应助四月采纳,获得10
33秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252897
求助须知:如何正确求助?哪些是违规求助? 4416496
关于积分的说明 13749852
捐赠科研通 4288649
什么是DOI,文献DOI怎么找? 2353022
邀请新用户注册赠送积分活动 1349787
关于科研通互助平台的介绍 1309434