Artificial intelligence and colon capsule endoscopy: development of an automated diagnostic system of protruding lesions in colon capsule endoscopy

胶囊内镜 医学 胶囊 卷积神经网络 接收机工作特性 放射科 内窥镜检查 结直肠癌 结肠镜检查 人工智能 内科学 计算机科学 癌症 植物 生物
作者
Miguel Mascarenhas Saraiva,João Ferreira,Hélder Cardoso,João Afonso,Tiago Ribeiro,Patrícia Andrade,Marco Parente,Renato Natal Jorge,Guilherme Macedo
出处
期刊:Techniques in Coloproctology [Springer Nature]
卷期号:25 (11): 1243-1248 被引量:11
标识
DOI:10.1007/s10151-021-02517-5
摘要

Background Colon capsule endoscopy (CCE) is a minimally invasive alternative for patients unwilling to undergo conventional colonoscopy, or for whom the latter exam is contraindicated. This is particularly important in the setting of colorectal cancer screening. Nevertheless, these exams produce large numbers of images, and reading them is a monotonous and time-consuming task, with the risk of overlooking important lesions. The development of automated tools based on artificial intelligence (AI) technology may improve some of the drawbacks of this diagnostic instrument. Methods A database of CCE images was used for development of a Convolutional Neural Network (CNN) model. This database included anonymized images of patients with protruding lesions in the colon or patients with normal colonic mucosa or with other pathologic findings. A total of 3,387,259 frames from 24 CCE exams were retrospectively reviewed. For CNN development, 3640 images (860 protruding lesions and 2780 with normal mucosa or other findings) were ultimately extracted. Training and validation datasets were constructed for the development and testing of the CNN. Results The CNN detected protruding lesions with a sensitivity, specificity, positive and negative predictive values of 90.7, 92.6, 79.2 and 96.9%, respectively. The area under the receiver operating characteristic curve for detection of protruding lesions was 0.97. Conclusions The deep learning algorithm we developed is capable of accurately detecting protruding lesions. The application of AI technology to CCE may increase its diagnostic accuracy and acceptance for screening of colorectal neoplasia.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
扶摇完成签到 ,获得积分10
4秒前
李健应助之遥采纳,获得10
6秒前
优美的海秋完成签到 ,获得积分10
6秒前
7秒前
LZH发布了新的文献求助10
7秒前
9秒前
10秒前
10秒前
11秒前
moule发布了新的文献求助10
12秒前
12秒前
wei发布了新的文献求助10
14秒前
15秒前
时光完成签到,获得积分10
16秒前
sing发布了新的文献求助10
17秒前
liweiDr发布了新的文献求助10
17秒前
活泼的涵菡完成签到,获得积分20
17秒前
1sss发布了新的文献求助10
20秒前
关关完成签到,获得积分10
21秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
CipherSage应助科研通管家采纳,获得10
23秒前
Owen应助科研通管家采纳,获得10
23秒前
无花果应助科研通管家采纳,获得10
23秒前
23秒前
良辰应助科研通管家采纳,获得10
24秒前
苏卿应助科研通管家采纳,获得10
24秒前
赘婿应助科研通管家采纳,获得10
24秒前
24秒前
逻辑猫应助科研通管家采纳,获得10
24秒前
24秒前
25秒前
25秒前
25秒前
大个应助奇异果采纳,获得20
27秒前
27秒前
28秒前
wjq2430发布了新的文献求助10
29秒前
moule完成签到,获得积分20
30秒前
30秒前
JamesPei应助gwh采纳,获得10
30秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139285
求助须知:如何正确求助?哪些是违规求助? 2790137
关于积分的说明 7794105
捐赠科研通 2446563
什么是DOI,文献DOI怎么找? 1301261
科研通“疑难数据库(出版商)”最低求助积分说明 626124
版权声明 601109