Parameter-Free Loss for Class-Imbalanced Deep Learning in Image Classification

超参数 离群值 计算机科学 人工智能 图像(数学) 铰链损耗 功能(生物学) 接收机工作特性 模式识别(心理学) 二元分类 机器学习 班级(哲学) 二进制数 深度学习 数学 支持向量机 算术 生物 进化生物学
作者
Jie Du,Yanhong Zhou,Peng Liu,Chi‐Man Vong,Tianfu Wang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (6): 3234-3240 被引量:32
标识
DOI:10.1109/tnnls.2021.3110885
摘要

Current state-of-the-art class-imbalanced loss functions for deep models require exhaustive tuning on hyperparameters for high model performance, resulting in low training efficiency and impracticality for nonexpert users. To tackle this issue, a parameter-free loss (PF-loss) function is proposed, which works for both binary and multiclass-imbalanced deep learning for image classification tasks. PF-loss provides three advantages: 1) training time is significantly reduced due to NO tuning on hyperparameter(s); 2) it dynamically pays more attention on minority classes (rather than outliers compared to the existing loss functions) with NO hyperparameters in the loss function; and 3) higher accuracy can be achieved since it adapts to the changes of data distribution in each mini-batch instead of the fixed hyperparameters in the existing methods during training, especially when the data are highly skewed. Experimental results on some classical image datasets with different imbalance ratios (IR, up to 200) show that PF-loss reduces the training time down to 1/148 of that spent by compared state-of-the-art losses and simultaneously achieves comparable or even higher accuracy in terms of both G-mean and area under receiver operating characteristic (ROC) curve (AUC) metrics, especially when the data are highly skewed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白衣卿相完成签到,获得积分10
刚刚
勤恳雅莉应助1212采纳,获得10
1秒前
1秒前
1秒前
GU发布了新的文献求助10
2秒前
科研通AI6应助动听荠采纳,获得10
2秒前
郭德纲发布了新的文献求助10
2秒前
4秒前
参宿三完成签到 ,获得积分10
5秒前
5秒前
6秒前
7秒前
舒适行天完成签到,获得积分10
7秒前
blingbling完成签到,获得积分10
7秒前
英姑应助宫立辉采纳,获得10
8秒前
8秒前
缥缈绮彤发布了新的文献求助10
9秒前
贤惠的醉蝶关注了科研通微信公众号
9秒前
RamonMi完成签到,获得积分10
10秒前
木婉清完成签到,获得积分10
10秒前
10秒前
三余完成签到,获得积分10
10秒前
10秒前
小潘完成签到,获得积分10
11秒前
尊敬帅哥发布了新的文献求助10
11秒前
Joshua完成签到,获得积分10
11秒前
田様应助wang77采纳,获得10
11秒前
寡王一路硕博完成签到,获得积分10
11秒前
iiiii发布了新的文献求助30
12秒前
12秒前
sekun完成签到,获得积分10
13秒前
小小精神应助irisy采纳,获得20
13秒前
XYYX发布了新的文献求助10
14秒前
14秒前
浮游应助科研通管家采纳,获得10
14秒前
打打应助科研通管家采纳,获得10
14秒前
14秒前
浮游应助科研通管家采纳,获得10
14秒前
小二郎应助科研通管家采纳,获得10
14秒前
JamesPei应助科研通管家采纳,获得10
14秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5581109
求助须知:如何正确求助?哪些是违规求助? 4665690
关于积分的说明 14757767
捐赠科研通 4607511
什么是DOI,文献DOI怎么找? 2528260
邀请新用户注册赠送积分活动 1497575
关于科研通互助平台的介绍 1466462