An Improved Integral Column Generation Algorithm Using Machine Learning for Aircrew Pairing

列生成 机组调度 计算机科学 人工神经网络 算法 船员 栏(排版) 集合(抽象数据类型) 数学优化 启发式 调度(生产过程) 数学 人工智能 工程类 航空学 程序设计语言 帧(网络) 电信
作者
Adil Tahir,Frédéric Quesnel,Guy Desaulniers,Issmail El Hallaoui,Yassine Yaakoubi
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
卷期号:55 (6): 1411-1429 被引量:14
标识
DOI:10.1287/trsc.2021.1084
摘要

The crew-pairing problem (CPP) is solved in the first step of the crew-scheduling process. It consists of creating a set of pairings (sequence of flights, connections, and rests forming one or multiple days of work for an anonymous crew member) that covers a given set of flights at minimum cost. Those pairings are assigned to crew members in a subsequent crew-rostering step. In this paper, we propose a new integral column-generation algorithm for the CPP, called improved integral column generation with prediction ([Formula: see text]), which leaps from one integer solution to another until a near-optimal solution is found. Our algorithm improves on previous integral column-generation algorithms by introducing a set of reduced subproblems. Those subproblems only contain flight connections that have a high probability of being selected in a near-optimal solution and are, therefore, solved faster. We predict flight-connection probabilities using a deep neural network trained in a supervised framework. We test [Formula: see text] on several real-life instances and show that it outperforms a state-of-the-art integral column-generation algorithm as well as a branch-and-price heuristic commonly used in commercial airline planning software, in terms of both solution costs and computing times. We highlight the contributions of the neural network to [Formula: see text].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
haheihe完成签到,获得积分10
刚刚
1秒前
1秒前
华仔应助心灵的守望采纳,获得10
1秒前
1秒前
2秒前
WuFen完成签到,获得积分10
4秒前
SciGPT应助haheihe采纳,获得30
4秒前
xbbccc完成签到,获得积分10
4秒前
科研通AI2S应助沙脑采纳,获得10
6秒前
共享精神应助qian采纳,获得10
7秒前
Xppcjlan发布了新的文献求助10
7秒前
研友_LX66qZ完成签到,获得积分10
7秒前
8秒前
WuFen发布了新的文献求助20
8秒前
呢喃完成签到,获得积分10
8秒前
大个应助Jane采纳,获得30
9秒前
11秒前
11秒前
12秒前
天狼星高高的芦丁完成签到,获得积分10
12秒前
沈慧完成签到,获得积分10
13秒前
13秒前
大个应助present采纳,获得10
15秒前
Leslie发布了新的文献求助10
15秒前
16秒前
liulujlnd2024完成签到,获得积分10
16秒前
xbbccc发布了新的文献求助10
17秒前
斯文败类应助ss采纳,获得10
17秒前
空古悠浪发布了新的文献求助10
18秒前
18秒前
bkagyin应助云宝采纳,获得10
19秒前
20秒前
飘逸的虔发布了新的文献求助10
20秒前
20秒前
20秒前
21秒前
21秒前
22秒前
小杨发布了新的文献求助10
24秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3454924
求助须知:如何正确求助?哪些是违规求助? 3050185
关于积分的说明 9020562
捐赠科研通 2738826
什么是DOI,文献DOI怎么找? 1502304
科研通“疑难数据库(出版商)”最低求助积分说明 694480
邀请新用户注册赠送积分活动 693178