湿地
濒危物种
气候变化
生物多样性
地理
干旱
环境科学
环境保护
生态学
拉姆萨尔遗址
生态系统
栖息地
生物
作者
Rassim Khelifa,Hayat Mahdjoub,Michael J. Samways
标识
DOI:10.1016/j.scitotenv.2021.150806
摘要
Climate change and anthropogenic perturbation threaten resilience of wetlands globally, particularly in regions where environmental conditions are already hot and dry, and human impacts are rapidly intensifying and expanding. Here we assess the vulnerability of Ramsar wetlands of six North African countries (Western Sahara, Morocco, Algeria, Tunisia, Libya, and Egypt) by asking three questions: (1) what are the recent anthropogenic changes that the wetlands experienced? (2) what are the projected future climatic changes? (3) how wetlands with different conservation priorities and globally threatened species are impacted by anthropogenic pressures? We used climatic data (historical and future projections) from WorldClim 2, drought index (SPEI), and human footprint index (HFI for 2000 and 2019) to estimate anthropogenic pressures, as well as waterbird conservation value (WCV: a metric indicating conservation priority of sites) and the breeding distribution of three threatened waterbird species (Aythya nyroca, Marmaronetta angustirostris, and Oxyura leucocephala) to understand how biodiversity is impacted by anthropogenic pressure. We found that temperature, precipitation, drought, and human footprint index (HFI) increased during earlier decades. Interestingly, areas with high HFI are projected to encounter lower warming but more severe drought. We also found that WCV was positively correlated with the magnitude of current HFI, indicating that sites of high conservation value for waterbirds encounter higher levels of anthropogenic pressure. The breeding range of the three threatened species of waterbirds showed a marked increase in HFI and is projected to experience a severe increase in temperature by 2081-2100, especially under the high emission scenario (SSP8.5) where environmental temperature becomes closer to the species critical maximum. Our results highlight the importance of integrating new conservation measures that increase the resilience of North African protected wetlands to reduce extinction risk to biodiversity.
科研通智能强力驱动
Strongly Powered by AbleSci AI