辣根过氧化物酶
漆酶
化学工程
过硫酸盐
材料科学
吸附
化学
核化学
催化作用
阳离子聚合
纳米复合材料
孔雀绿
纳米技术
有机化学
酶
工程类
作者
O. Tolga Gül,İsmail Öçsoy
标识
DOI:10.1016/j.eti.2021.101992
摘要
Synthetic dyes leading to substantial discharge in various industrial areas such as textile, plastics, food, and cosmetics, have growingly threatened all livings. Although enzymes have been used for dye degradation, weak stability against changes in reaction environment, lack of reusability and high cost have strictly limited their use. Herein, we have developed co-enzymes nanoflowers incorporated-magnetic carbon nanotube nanocomposite as a novel and efficient nanocatalyst for superior degradation of malachite green (MG) and acid orange 7 (AO7) as model cationic and anionic dyes with excellent cyclic use. The HRP-Lac [email protected] nanocomposite (NC) containing horseradish peroxidase–laccase nanoflower (HRP-Lac NF) and iron oxide nanoparticles (Fe3O4 NPs) decorated magnetic carbon nanotube (mCNT) was systematically employed in dye degradation as functions of pH, reaction time, dye type and reusability. This HRP-Lac [email protected] nanocomposite acted as one malfunctional nanoplatform since both HRP and Lac enzymes were used for rapid and efficient dye removal, Fe3O4 NPs provided cyclic use and omitting the centrifugation step, and CNT functioned as a unique platform for NFs and Fe3O4 NPs deposition. We demonstrated that HRP-Lac [email protected] NC induced ∼90 % MG and ∼85% AO7 decolorization in 20 min at pH 7.4 while it almost completely decolorized MG and AO7 in 60 min. In addition, ∼95% MG and ∼85% AO7 decolorization were accomplished even after 16 cycling use of HRP-Lac [email protected] NC. We claim that HRP-Lac [email protected] NC induced dye decolorization with dual mechanisms, enzymatic degradation, and physical adsorption.
科研通智能强力驱动
Strongly Powered by AbleSci AI