Towards improved breast mass detection using dual-view mammogram matching

计算机科学 人工智能 管道(软件) 匹配(统计) 机器学习 模式识别(心理学) 乳腺癌 乳腺摄影术 计算机视觉 癌症 数学 医学 统计 内科学 程序设计语言
作者
Yutong Yan,Pierre-Henri Conze,Mathieu Lamard,Gwénolé Quellec,Béatrice Cochener,Gouenou Coatrieux
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:71: 102083-102083 被引量:23
标识
DOI:10.1016/j.media.2021.102083
摘要

Breast cancer screening benefits from the visual analysis of multiple views of routine mammograms. As for clinical practice, computer-aided diagnosis (CAD) systems could be enhanced by integrating multi-view information. In this work, we propose a new multi-tasking framework that combines craniocaudal (CC) and mediolateral-oblique (MLO) mammograms for automatic breast mass detection. Rather than addressing mass recognition only, we exploit multi-tasking properties of deep networks to jointly learn mass matching and classification, towards better detection performance. Specifically, we propose a unified Siamese network that combines patch-level mass/non-mass classification and dual-view mass matching to take full advantage of multi-view information. This model is exploited in a full image detection pipeline based on You-Only-Look-Once (YOLO) region proposals. We carry out exhaustive experiments to highlight the contribution of dual-view matching for both patch-level classification and examination-level detection scenarios. Results demonstrate that mass matching highly improves the full-pipeline detection performance by outperforming conventional single-task schemes with 94.78% as Area Under the Curve (AUC) score and a classification accuracy of 0.8791. Interestingly, mass classification also improves the performance of mass matching, which proves the complementarity of both tasks. Our method further guides clinicians by providing accurate dual-view mass correspondences, which suggests that it could act as a relevant second opinion for mammogram interpretation and breast cancer diagnosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小碗面发布了新的文献求助20
刚刚
慕青应助小何采纳,获得10
刚刚
nenoaowu发布了新的文献求助10
1秒前
1秒前
高高诗柳发布了新的文献求助10
1秒前
可爱中蓝完成签到,获得积分20
2秒前
3秒前
3秒前
zjluo发布了新的文献求助10
3秒前
4秒前
Lucas应助011235813采纳,获得10
4秒前
5秒前
5秒前
5秒前
景辣条应助JxJ采纳,获得10
7秒前
9秒前
小何发布了新的文献求助10
10秒前
神勇的人雄完成签到,获得积分20
10秒前
Hello应助随遇而安采纳,获得10
10秒前
平常映雁完成签到,获得积分10
11秒前
科研通AI2S应助正直的惜文采纳,获得10
11秒前
zy_发布了新的文献求助10
12秒前
wangwei完成签到 ,获得积分10
12秒前
12秒前
忘忧草发布了新的文献求助10
12秒前
12秒前
从容的文涛完成签到,获得积分20
14秒前
荀语山发布了新的文献求助10
15秒前
Stormi发布了新的文献求助10
16秒前
wjm完成签到,获得积分10
17秒前
17秒前
大模型应助天才Simba采纳,获得10
19秒前
19秒前
jiang完成签到,获得积分10
20秒前
贪玩绿草完成签到 ,获得积分10
22秒前
jiang发布了新的文献求助10
23秒前
qilinghe发布了新的文献求助10
25秒前
25秒前
义气晓筠发布了新的文献求助10
26秒前
852应助小鲸鱼采纳,获得10
26秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145789
求助须知:如何正确求助?哪些是违规求助? 2797251
关于积分的说明 7823240
捐赠科研通 2453560
什么是DOI,文献DOI怎么找? 1305699
科研通“疑难数据库(出版商)”最低求助积分说明 627543
版权声明 601484