Combined Rule-Based and Hypothesis-Based Method for Building Model Reconstruction from Photogrammetric Point Clouds

点云 摄影测量学 计算机科学 约束(计算机辅助设计) 邻接表 解算器 成对比较 建筑模型 点(几何) 人工智能 拓扑(电路) 算法 计算机视觉 数据挖掘 几何学 数学 模拟 组合数学 程序设计语言
作者
Linfu Xie,Han Hu,Qing Zhu,Xiaoming Li,Shengjun Tang,You Li,Renzhong Guo,Yeting Zhang,Weixi Wang
出处
期刊:Remote Sensing [MDPI AG]
卷期号:13 (6): 1107-1107 被引量:19
标识
DOI:10.3390/rs13061107
摘要

Three-dimensional (3D) building models play an important role in digital cities and have numerous potential applications in environmental studies. In recent years, the photogrammetric point clouds obtained by aerial oblique images have become a major source of data for 3D building reconstruction. Aiming at reconstructing a 3D building model at Level of Detail (LoD) 2 and even LoD3 with preferred geometry accuracy and affordable computation expense, in this paper, we propose a novel method for the efficient reconstruction of building models from the photogrammetric point clouds which combines the rule-based and the hypothesis-based method using a two-stage topological recovery process. Given the point clouds of a single building, planar primitives and their corresponding boundaries are extracted and regularized to obtain abstracted building counters. In the first stage, we take advantage of the regularity and adjacency of the building counters to recover parts of the topological relationships between different primitives. Three constraints, namely pairwise constraint, triplet constraint, and nearby constraint, are utilized to form an initial reconstruction with candidate faces in ambiguous areas. In the second stage, the topologies in ambiguous areas are removed and reconstructed by solving an integer linear optimization problem based on the initial constraints while considering data fitting degree. Experiments using real datasets reveal that compared with state-of-the-art methods, the proposed method can efficiently reconstruct 3D building models in seconds with the geometry accuracy in decimeter level.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
守望阳光1完成签到,获得积分10
刚刚
.....完成签到,获得积分20
刚刚
余云开完成签到 ,获得积分10
刚刚
wangn发布了新的文献求助10
刚刚
Gru发布了新的文献求助10
1秒前
1秒前
通~发布了新的文献求助10
1秒前
可爱的函函应助体贴啤酒采纳,获得10
2秒前
李健应助gaos采纳,获得10
2秒前
3秒前
zmy发布了新的文献求助10
3秒前
电脑桌完成签到,获得积分10
4秒前
汉堡包应助咿咿呀呀采纳,获得10
5秒前
科研通AI5应助大胆遥采纳,获得10
5秒前
5秒前
标致的安荷完成签到,获得积分10
6秒前
ABin完成签到,获得积分10
6秒前
跳跃难胜发布了新的文献求助10
6秒前
阳光的虔纹完成签到 ,获得积分10
6秒前
7秒前
番茄爱喝粥完成签到,获得积分10
7秒前
CipherSage应助老王爱学习采纳,获得10
7秒前
Fa完成签到,获得积分10
7秒前
8秒前
kira完成签到,获得积分10
9秒前
舒服的茹嫣完成签到,获得积分20
9秒前
Stvn发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
11秒前
明理的天蓝完成签到,获得积分10
11秒前
咳咳发布了新的文献求助10
11秒前
木叶研完成签到,获得积分10
11秒前
无花果应助通~采纳,获得10
11秒前
12秒前
13秒前
周助发布了新的文献求助10
13秒前
伯赏秋白完成签到,获得积分10
13秒前
慕青应助sunzhiyu233采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740