Multi-site MRI harmonization via attention-guided deep domain adaptation for brain disorder identification

判别式 人工智能 计算机科学 模式识别(心理学) 稳健性(进化) 概化理论 神经影像学 鉴定(生物学) 特征(语言学) 深度学习 学习迁移 水准点(测量) 特征提取 机器学习 神经科学 心理学 生物 植物 基因 大地测量学 生物化学 发展心理学 哲学 语言学 化学 地理
作者
Hao Guan,Yunbi Liu,Erkun Yang,Pew‐Thian Yap,Dinggang Shen,Mingxia Liu
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:71: 102076-102076 被引量:94
标识
DOI:10.1016/j.media.2021.102076
摘要

Structural magnetic resonance imaging (MRI) has shown great clinical and practical values in computer-aided brain disorder identification. Multi-site MRI data increase sample size and statistical power, but are susceptible to inter-site heterogeneity caused by different scanners, scanning protocols, and subject cohorts. Multi-site MRI harmonization (MMH) helps alleviate the inter-site difference for subsequent analysis. Some MMH methods performed at imaging level or feature extraction level are concise but lack robustness and flexibility to some extent. Even though several machine/deep learning-based methods have been proposed for MMH, some of them require a portion of labeled data in the to-be-analyzed target domain or ignore the potential contributions of different brain regions to the identification of brain disorders. In this work, we propose an attention-guided deep domain adaptation (AD2A) framework for MMH and apply it to automated brain disorder identification with multi-site MRIs. The proposed framework does not need any category label information of target data, and can also automatically identify discriminative regions in whole-brain MR images. Specifically, the proposed AD2A is composed of three key modules: (1) an MRI feature encoding module to extract representations of input MRIs, (2) an attention discovery module to automatically locate discriminative dementia-related regions in each whole-brain MRI scan, and (3) a domain transfer module trained with adversarial learning for knowledge transfer between the source and target domains. Experiments have been performed on 2572 subjects from four benchmark datasets with T1-weighted structural MRIs, with results demonstrating the effectiveness of the proposed method in both tasks of brain disorder identification and disease progression prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Charon发布了新的文献求助10
刚刚
科研通AI2S应助冷静新烟采纳,获得10
刚刚
脑洞疼应助Kaka采纳,获得30
刚刚
慕青应助小哥采纳,获得10
刚刚
英俊的铭应助霞霞采纳,获得10
刚刚
刘妞妞应助酷炫翠桃采纳,获得10
1秒前
1秒前
Orange应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
活力安筠应助科研通管家采纳,获得10
1秒前
打打应助科研通管家采纳,获得30
1秒前
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
jie酱拌面应助科研通管家采纳,获得10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
浮游应助无心的依秋采纳,获得40
1秒前
852应助科研通管家采纳,获得10
1秒前
1秒前
jie酱拌面应助科研通管家采纳,获得10
1秒前
1秒前
大模型应助科研通管家采纳,获得10
1秒前
热心子轩应助科研通管家采纳,获得10
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
搜集达人应助adasdad采纳,获得10
2秒前
all应助科研通管家采纳,获得20
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
2秒前
178应助科研通管家采纳,获得10
2秒前
w_tiger完成签到 ,获得积分10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
顾矜应助还单身的香菇采纳,获得10
3秒前
聪明无敌小腚宝完成签到,获得积分10
3秒前
wz完成签到 ,获得积分10
3秒前
英俊的铭应助CHL5722采纳,获得10
4秒前
5秒前
5秒前
zj发布了新的文献求助10
5秒前
南枝完成签到,获得积分10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600474
求助须知:如何正确求助?哪些是违规求助? 4010608
关于积分的说明 12416866
捐赠科研通 3690360
什么是DOI,文献DOI怎么找? 2034326
邀请新用户注册赠送积分活动 1067728
科研通“疑难数据库(出版商)”最低求助积分说明 952513