Multi-site MRI harmonization via attention-guided deep domain adaptation for brain disorder identification

判别式 人工智能 计算机科学 模式识别(心理学) 稳健性(进化) 概化理论 神经影像学 鉴定(生物学) 特征(语言学) 深度学习 学习迁移 水准点(测量) 特征提取 机器学习 神经科学 心理学 生物 植物 基因 大地测量学 生物化学 发展心理学 哲学 语言学 化学 地理
作者
Hao Guan,Yunbi Liu,Erkun Yang,Pew Thian Yap,Dinggang Shen,Mingxia Liu
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:71: 102076-102076 被引量:70
标识
DOI:10.1016/j.media.2021.102076
摘要

Structural magnetic resonance imaging (MRI) has shown great clinical and practical values in computer-aided brain disorder identification. Multi-site MRI data increase sample size and statistical power, but are susceptible to inter-site heterogeneity caused by different scanners, scanning protocols, and subject cohorts. Multi-site MRI harmonization (MMH) helps alleviate the inter-site difference for subsequent analysis. Some MMH methods performed at imaging level or feature extraction level are concise but lack robustness and flexibility to some extent. Even though several machine/deep learning-based methods have been proposed for MMH, some of them require a portion of labeled data in the to-be-analyzed target domain or ignore the potential contributions of different brain regions to the identification of brain disorders. In this work, we propose an attention-guided deep domain adaptation (AD2A) framework for MMH and apply it to automated brain disorder identification with multi-site MRIs. The proposed framework does not need any category label information of target data, and can also automatically identify discriminative regions in whole-brain MR images. Specifically, the proposed AD2A is composed of three key modules: (1) an MRI feature encoding module to extract representations of input MRIs, (2) an attention discovery module to automatically locate discriminative dementia-related regions in each whole-brain MRI scan, and (3) a domain transfer module trained with adversarial learning for knowledge transfer between the source and target domains. Experiments have been performed on 2572 subjects from four benchmark datasets with T1-weighted structural MRIs, with results demonstrating the effectiveness of the proposed method in both tasks of brain disorder identification and disease progression prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
机智的小懒虫完成签到 ,获得积分10
刚刚
科研通AI2S应助lyh采纳,获得10
刚刚
余xinxin完成签到,获得积分10
2秒前
619805092完成签到,获得积分10
3秒前
筝zheng关注了科研通微信公众号
3秒前
呵呵哒发布了新的文献求助10
3秒前
4秒前
ZZ发布了新的文献求助30
4秒前
顾矜应助dicy1232003采纳,获得10
5秒前
尚可完成签到 ,获得积分10
5秒前
JamesPei应助阿橘采纳,获得10
6秒前
Smith.w发布了新的文献求助10
6秒前
杳鸢应助淼吉采纳,获得10
9秒前
呵呵哒完成签到,获得积分10
10秒前
hfhkjh完成签到,获得积分10
10秒前
14秒前
14秒前
Junrong应助机智采纳,获得10
15秒前
16秒前
17秒前
18秒前
18秒前
义气绿柳发布了新的文献求助10
18秒前
19秒前
dicy1232003发布了新的文献求助10
19秒前
Hello应助簪花带酒采纳,获得30
19秒前
筝zheng发布了新的文献求助10
20秒前
烟花应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
8R60d8应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
杳鸢应助科研通管家采纳,获得10
20秒前
不配.应助科研通管家采纳,获得10
20秒前
8R60d8应助科研通管家采纳,获得10
20秒前
20秒前
Ava应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
赘婿应助科研通管家采纳,获得10
21秒前
lucy完成签到 ,获得积分10
21秒前
21秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The diagnosis of sex before birth using cells from the amniotic fluid (a preliminary report) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229292
求助须知:如何正确求助?哪些是违规求助? 2877036
关于积分的说明 8197538
捐赠科研通 2544353
什么是DOI,文献DOI怎么找? 1374356
科研通“疑难数据库(出版商)”最低求助积分说明 646935
邀请新用户注册赠送积分活动 621742