清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Multi-site MRI harmonization via attention-guided deep domain adaptation for brain disorder identification

判别式 人工智能 计算机科学 模式识别(心理学) 稳健性(进化) 概化理论 神经影像学 鉴定(生物学) 特征(语言学) 深度学习 学习迁移 水准点(测量) 特征提取 机器学习 神经科学 心理学 生物 植物 基因 大地测量学 生物化学 发展心理学 哲学 语言学 化学 地理
作者
Hao Guan,Yunbi Liu,Erkun Yang,Pew‐Thian Yap,Dinggang Shen,Mingxia Liu
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:71: 102076-102076 被引量:94
标识
DOI:10.1016/j.media.2021.102076
摘要

Structural magnetic resonance imaging (MRI) has shown great clinical and practical values in computer-aided brain disorder identification. Multi-site MRI data increase sample size and statistical power, but are susceptible to inter-site heterogeneity caused by different scanners, scanning protocols, and subject cohorts. Multi-site MRI harmonization (MMH) helps alleviate the inter-site difference for subsequent analysis. Some MMH methods performed at imaging level or feature extraction level are concise but lack robustness and flexibility to some extent. Even though several machine/deep learning-based methods have been proposed for MMH, some of them require a portion of labeled data in the to-be-analyzed target domain or ignore the potential contributions of different brain regions to the identification of brain disorders. In this work, we propose an attention-guided deep domain adaptation (AD2A) framework for MMH and apply it to automated brain disorder identification with multi-site MRIs. The proposed framework does not need any category label information of target data, and can also automatically identify discriminative regions in whole-brain MR images. Specifically, the proposed AD2A is composed of three key modules: (1) an MRI feature encoding module to extract representations of input MRIs, (2) an attention discovery module to automatically locate discriminative dementia-related regions in each whole-brain MRI scan, and (3) a domain transfer module trained with adversarial learning for knowledge transfer between the source and target domains. Experiments have been performed on 2572 subjects from four benchmark datasets with T1-weighted structural MRIs, with results demonstrating the effectiveness of the proposed method in both tasks of brain disorder identification and disease progression prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyds完成签到,获得积分10
16秒前
完美世界应助科研通管家采纳,获得10
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
23秒前
30秒前
55秒前
爱窦完成签到 ,获得积分10
1分钟前
1分钟前
juan完成签到 ,获得积分10
1分钟前
谢薇是猪完成签到,获得积分10
2分钟前
清脆的飞丹完成签到,获得积分10
2分钟前
woxinyouyou完成签到,获得积分0
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
开心苠发布了新的文献求助10
2分钟前
3分钟前
拉长的秋白完成签到 ,获得积分10
3分钟前
3分钟前
widesky777完成签到 ,获得积分0
3分钟前
3分钟前
从容的雪碧完成签到,获得积分10
3分钟前
3分钟前
无悔完成签到 ,获得积分10
3分钟前
NexusExplorer应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
Hjz完成签到,获得积分20
4分钟前
coolplex完成签到 ,获得积分10
4分钟前
5分钟前
6分钟前
微笑高山完成签到 ,获得积分10
6分钟前
雪山飞龙完成签到,获得积分10
7分钟前
里昂义务完成签到,获得积分10
7分钟前
里昂义务发布了新的文献求助10
7分钟前
光合作用完成签到,获得积分10
8分钟前
fanssw完成签到 ,获得积分10
8分钟前
8分钟前
liuzhigang完成签到 ,获得积分10
9分钟前
JrPaleo101完成签到,获得积分10
9分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965722
求助须知:如何正确求助?哪些是违规求助? 3510967
关于积分的说明 11155723
捐赠科研通 3245436
什么是DOI,文献DOI怎么找? 1792920
邀请新用户注册赠送积分活动 874201
科研通“疑难数据库(出版商)”最低求助积分说明 804229