清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Multi-site MRI harmonization via attention-guided deep domain adaptation for brain disorder identification

判别式 人工智能 计算机科学 模式识别(心理学) 稳健性(进化) 概化理论 神经影像学 鉴定(生物学) 特征(语言学) 深度学习 学习迁移 水准点(测量) 特征提取 机器学习 神经科学 心理学 发展心理学 生物化学 化学 植物 语言学 哲学 大地测量学 生物 基因 地理
作者
Hao Guan,Yunbi Liu,Erkun Yang,Pew‐Thian Yap,Dinggang Shen,Mingxia Liu
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:71: 102076-102076 被引量:94
标识
DOI:10.1016/j.media.2021.102076
摘要

Structural magnetic resonance imaging (MRI) has shown great clinical and practical values in computer-aided brain disorder identification. Multi-site MRI data increase sample size and statistical power, but are susceptible to inter-site heterogeneity caused by different scanners, scanning protocols, and subject cohorts. Multi-site MRI harmonization (MMH) helps alleviate the inter-site difference for subsequent analysis. Some MMH methods performed at imaging level or feature extraction level are concise but lack robustness and flexibility to some extent. Even though several machine/deep learning-based methods have been proposed for MMH, some of them require a portion of labeled data in the to-be-analyzed target domain or ignore the potential contributions of different brain regions to the identification of brain disorders. In this work, we propose an attention-guided deep domain adaptation (AD2A) framework for MMH and apply it to automated brain disorder identification with multi-site MRIs. The proposed framework does not need any category label information of target data, and can also automatically identify discriminative regions in whole-brain MR images. Specifically, the proposed AD2A is composed of three key modules: (1) an MRI feature encoding module to extract representations of input MRIs, (2) an attention discovery module to automatically locate discriminative dementia-related regions in each whole-brain MRI scan, and (3) a domain transfer module trained with adversarial learning for knowledge transfer between the source and target domains. Experiments have been performed on 2572 subjects from four benchmark datasets with T1-weighted structural MRIs, with results demonstrating the effectiveness of the proposed method in both tasks of brain disorder identification and disease progression prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
677完成签到 ,获得积分10
17秒前
咯咯咯完成签到 ,获得积分10
29秒前
和气生财君完成签到 ,获得积分10
53秒前
Moto_Fang完成签到 ,获得积分10
58秒前
财路通八方完成签到 ,获得积分10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
null完成签到,获得积分0
1分钟前
不知道完成签到,获得积分10
1分钟前
1分钟前
FEOROCHA完成签到,获得积分20
1分钟前
酷酷海豚完成签到,获得积分10
2分钟前
科研通AI6应助FEOROCHA采纳,获得10
2分钟前
多亿点完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
3分钟前
追剧狂魔完成签到,获得积分10
3分钟前
yuyiyi完成签到,获得积分10
3分钟前
爆米花应助yf采纳,获得10
3分钟前
3分钟前
方白秋完成签到,获得积分0
4分钟前
研友_Z7gWlZ发布了新的文献求助10
4分钟前
juan完成签到 ,获得积分0
4分钟前
研友_Z7gWlZ完成签到,获得积分10
4分钟前
生信小菜鸟完成签到 ,获得积分10
4分钟前
NexusExplorer应助可可采纳,获得10
4分钟前
sunialnd完成签到,获得积分10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
可可完成签到,获得积分20
5分钟前
搞怪的白云完成签到 ,获得积分10
5分钟前
5分钟前
可可发布了新的文献求助10
5分钟前
KongXY完成签到 ,获得积分10
5分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertebrate Palaeontology, 5th Edition 530
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5346975
求助须知:如何正确求助?哪些是违规求助? 4481382
关于积分的说明 13947618
捐赠科研通 4379405
什么是DOI,文献DOI怎么找? 2406359
邀请新用户注册赠送积分活动 1398970
关于科研通互助平台的介绍 1371850