Heterochromatin rewiring and domain disruption-mediated chromatin compaction during erythropoiesis

染色质 红细胞生成 细胞生物学 异染色质 二价染色质 生物 CTCF公司 常染色质 组蛋白修饰酶 转录因子 组蛋白 染色质重塑 遗传学 基因 医学 增强子 内科学 贫血
作者
Dong Li,Fan Wu,Shuo Zhou,Xiao‐Jun Huang,Hsiang‐Ying Lee
标识
DOI:10.1101/2021.08.12.456090
摘要

Abstract Development of mammalian red blood cells involves progressive chromatin compaction and subsequent enucleation in terminal stages of differentiation, but the molecular mechanisms underlying the three-dimensional chromatin reorganization and compaction remains obscure. Here, we systematically analyze the distinct features of higher-order chromatin in purified populations of primary human erythroblasts. Our results reveal that while heterochromatin regions undergo substantial compression, select transcription competent regions with active transcription signature are preferentially maintained to achieve a highly-compacted yet functional chromatin state in terminal erythropoiesis, which is about 20-30% of the nuclear volume compared to that of erythroid progenitors. While the partition of euchromatic and heterochromatic regions (compartment A and B) remain mostly unchanged, H3K9me3 marks relocalize to the nuclear periphery and a significant number of H3K9me3 long-range interactions are formed in the three-dimensional rewiring during terminal erythroid chromatin condensation. Moreover, ∼63% of the topologically associating domain (TAD) boundaries are disrupted, while certain TADs with active chromatin modification are selectively maintained during terminal erythropoiesis. The most well-maintained TADs are enriched for chromatin structural factors CTCF and SMC3, as well as factors and marks of the active transcription state. Finally, we demonstrate that the erythroid master regulator GATA1 involves in safeguarding select essential chromatin domains during terminal erythropoiesis. Our study therefore delineate the molecular characteristics of a development-driven chromatin compaction process, which reveals transcription competence as a key determinant of the select domain maintenance to ensure appropriate gene expression during immense chromatin compaction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
零零零零完成签到,获得积分20
2秒前
2秒前
大根猫完成签到,获得积分10
3秒前
feng完成签到,获得积分10
3秒前
顶刊完成签到,获得积分10
4秒前
亚亚完成签到 ,获得积分10
5秒前
代111应助顶天立地采纳,获得10
6秒前
子车茗应助林天采纳,获得30
7秒前
零零零零发布了新的文献求助10
7秒前
JG完成签到 ,获得积分10
7秒前
李爱国应助沐颜采纳,获得10
10秒前
11秒前
11秒前
哈哈哈完成签到 ,获得积分10
15秒前
秋田猫发布了新的文献求助10
16秒前
16秒前
共享精神应助sasaki采纳,获得10
16秒前
18秒前
小李完成签到,获得积分10
18秒前
陈谨完成签到 ,获得积分10
20秒前
叶枫寒完成签到 ,获得积分10
21秒前
彼岸完成签到,获得积分10
21秒前
JKL发布了新的文献求助10
21秒前
小翼完成签到,获得积分10
22秒前
科研通AI2S应助十言采纳,获得30
22秒前
CYQ完成签到 ,获得积分10
23秒前
粘豆包完成签到,获得积分10
23秒前
Somebody完成签到,获得积分10
25秒前
25秒前
明亮冰枫完成签到,获得积分10
26秒前
君莫笑完成签到 ,获得积分10
27秒前
WYB完成签到 ,获得积分10
28秒前
28秒前
caoxiongfeng_512完成签到,获得积分10
29秒前
Vino完成签到,获得积分10
29秒前
29秒前
laruijoint完成签到,获得积分10
29秒前
残剑月发布了新的文献求助30
30秒前
沐颜发布了新的文献求助10
30秒前
忧心的碧发布了新的文献求助10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603979
求助须知:如何正确求助?哪些是违规求助? 4688823
关于积分的说明 14856475
捐赠科研通 4695849
什么是DOI,文献DOI怎么找? 2541066
邀请新用户注册赠送积分活动 1507256
关于科研通互助平台的介绍 1471832