Heterochromatin rewiring and domain disruption-mediated chromatin compaction during erythropoiesis

染色质 红细胞生成 细胞生物学 异染色质 二价染色质 生物 CTCF公司 常染色质 组蛋白修饰酶 转录因子 组蛋白 染色质重塑 遗传学 基因 医学 增强子 内科学 贫血
作者
Dong Li,Fan Wu,Shuo Zhou,Xiao‐Jun Huang,Hsiang‐Ying Lee
标识
DOI:10.1101/2021.08.12.456090
摘要

Abstract Development of mammalian red blood cells involves progressive chromatin compaction and subsequent enucleation in terminal stages of differentiation, but the molecular mechanisms underlying the three-dimensional chromatin reorganization and compaction remains obscure. Here, we systematically analyze the distinct features of higher-order chromatin in purified populations of primary human erythroblasts. Our results reveal that while heterochromatin regions undergo substantial compression, select transcription competent regions with active transcription signature are preferentially maintained to achieve a highly-compacted yet functional chromatin state in terminal erythropoiesis, which is about 20-30% of the nuclear volume compared to that of erythroid progenitors. While the partition of euchromatic and heterochromatic regions (compartment A and B) remain mostly unchanged, H3K9me3 marks relocalize to the nuclear periphery and a significant number of H3K9me3 long-range interactions are formed in the three-dimensional rewiring during terminal erythroid chromatin condensation. Moreover, ∼63% of the topologically associating domain (TAD) boundaries are disrupted, while certain TADs with active chromatin modification are selectively maintained during terminal erythropoiesis. The most well-maintained TADs are enriched for chromatin structural factors CTCF and SMC3, as well as factors and marks of the active transcription state. Finally, we demonstrate that the erythroid master regulator GATA1 involves in safeguarding select essential chromatin domains during terminal erythropoiesis. Our study therefore delineate the molecular characteristics of a development-driven chromatin compaction process, which reveals transcription competence as a key determinant of the select domain maintenance to ensure appropriate gene expression during immense chromatin compaction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猪一宝爱学习完成签到,获得积分10
刚刚
61489486发布了新的文献求助10
刚刚
湘之灵若完成签到 ,获得积分10
刚刚
坏猫完成签到 ,获得积分10
刚刚
1秒前
大模型应助粘豆包采纳,获得100
1秒前
Lucas应助可可可采纳,获得10
1秒前
研友_841zXL完成签到,获得积分0
1秒前
Aries完成签到 ,获得积分10
1秒前
dai完成签到 ,获得积分10
3秒前
3秒前
ddsyg126完成签到 ,获得积分10
3秒前
marongzhi完成签到 ,获得积分10
3秒前
ljforever完成签到,获得积分10
3秒前
深情海秋发布了新的文献求助10
3秒前
Cruffin完成签到,获得积分10
4秒前
4秒前
4秒前
panpan完成签到,获得积分10
6秒前
cc完成签到,获得积分10
6秒前
随机昵称发布了新的文献求助10
7秒前
申雪狐发布了新的文献求助10
7秒前
小白完成签到,获得积分10
8秒前
8秒前
gxj发布了新的文献求助10
8秒前
咖可乐发布了新的文献求助10
8秒前
Evelyn完成签到,获得积分10
8秒前
李白白完成签到,获得积分10
9秒前
...发布了新的文献求助10
9秒前
小鱼儿完成签到,获得积分10
9秒前
我是小魔菇应助Yolo采纳,获得10
9秒前
max2024完成签到,获得积分10
10秒前
10秒前
594zqz完成签到,获得积分10
10秒前
读书的女人最美丽完成签到,获得积分10
10秒前
zz完成签到,获得积分10
11秒前
共享精神应助瑾玉采纳,获得10
11秒前
小九不太乖完成签到,获得积分10
12秒前
~Dreamboat发布了新的文献求助10
12秒前
qee完成签到,获得积分10
12秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158979
求助须知:如何正确求助?哪些是违规求助? 2810153
关于积分的说明 7886308
捐赠科研通 2468968
什么是DOI,文献DOI怎么找? 1314533
科研通“疑难数据库(出版商)”最低求助积分说明 630640
版权声明 602012