转子(电动)
振动
定子
控制理论(社会学)
声学
直升机旋翼
材料科学
作者
Markus Jo¨cker,Torsten Fransson
出处
期刊:ASME Turbo Expo 2002: Power for Land, Sea, and Air
日期:2002-01-01
卷期号:: 1047-1056
被引量:5
摘要
The excitability of single rotor blade mode shapes due to the excitations by upstream stators in high-pressure turbine stages is subject of the present work. An evaluation of unsteady aerodynamic analyses of the stator-rotor interaction towards their sensitivity to the rotor blade mode shape is presented and applied. The unsteady aerodynamic analyses were performed at midspan sections with a well validated 2D/Q3D hybrid Euler/Navier Stokes non-linear flow solver (UNSFLO). The mode shape is parametrized by a torsion axis location in the plane of the blade section, which allows the construction of excitability maps as a function of 2D rigid body mode shapes. Excitability itself is derived from a generalized force analysis. The evaluation demonstrates the high sensitivity of excitability to the mode shape, which suggests that only small modifications in mode shape can significantly change the risk of blade mode excitation. It also highlights the central importance of the relative phase of unsteady blade pressure harmonic. Changes in axial gap can significantly modify the excitability and transform highly excited modes to less excited modes and vice versa. The variation of rotational speed (−5% to +10%) did not show remarkable changes in the mode excitability of the investigated rotor.Copyright © 2002 by ASME
科研通智能强力驱动
Strongly Powered by AbleSci AI