规范化(社会学)
多光谱图像
像素
遥感
回归
人工智能
线性回归
辐射定标
计算机科学
模式识别(心理学)
数学
地质学
统计
校准
人类学
社会学
作者
Morton John Canty,Allan Aasbjerg Nielsen,Michael Schmidt
标识
DOI:10.1016/j.rse.2003.10.024
摘要
The linear scale invariance of the multivariate alteration detection (MAD) transformation is used to obtain invariant pixels for automatic relative radiometric normalization of time series of multispectral data. Normalization by means of ordinary least squares regression method is compared with normalization using orthogonal regression. The procedure is applied to Landsat TM images over Nevada, Landsat ETM+ images over Morocco, and SPOT HRV images over Kenya. Results from this new automatic, combined MAD/orthogonal regression method, based on statistical analysis of test pixels not used in the actual normalization, compare favorably with results from normalization from manually obtained time-invariant features.
科研通智能强力驱动
Strongly Powered by AbleSci AI