A Comprehensive Study Over VLAD and Product Quantization in Large-Scale Image Retrieval

计算机科学 判别式 Boosting(机器学习) 图像检索 搜索引擎索引 量化(信号处理) 数据挖掘 人工智能 情报检索 机器学习 图像(数学) 算法
作者
Eleftherios Spyromitros-Xioufis,Symeon Papadopoulos,Ioannis Kompatsiaris,Grigorios Tsoumakas,Ioannis Vlahavas
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:16 (6): 1713-1728 被引量:137
标识
DOI:10.1109/tmm.2014.2329648
摘要

This paper deals with content-based large-scale image retrieval using the state-of-the-art framework of VLAD and Product Quantization proposed by Jegou as a starting point. Demonstrating an excellent accuracy-efficiency trade-off, this framework has attracted increased attention from the community and numerous extensions have been proposed. In this work, we make an in-depth analysis of the framework that aims at increasing our understanding of its different processing steps and boosting its overall performance. Our analysis involves the evaluation of numerous extensions (both existing and novel) as well as the study of the effects of several unexplored parameters. We specifically focus on: a) employing more efficient and discriminative local features; b) improving the quality of the aggregated representation; and c) optimizing the indexing scheme. Our thorough experimental evaluation provides new insights into extensions that consistently contribute, and others that do not, to performance improvement, and sheds light onto the effects of previously unexplored parameters of the framework. As a result, we develop an enhanced framework that significantly outperforms the previous best reported accuracy results on standard benchmarks and is more efficient.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
peter应助刘老哥6采纳,获得20
2秒前
杨枝甘露发布了新的文献求助10
2秒前
2秒前
合适的绿蕊完成签到,获得积分10
3秒前
daheeeee发布了新的文献求助10
4秒前
5秒前
Akim应助程翠丝采纳,获得10
5秒前
顺利完成签到,获得积分10
5秒前
科研通AI2S应助大呆采纳,获得10
6秒前
6秒前
三日宝完成签到,获得积分10
7秒前
止山完成签到,获得积分10
7秒前
南华知识分子完成签到,获得积分10
7秒前
7秒前
冷静映安发布了新的文献求助10
7秒前
8秒前
lizhiqian2024完成签到,获得积分20
8秒前
8秒前
NexusExplorer应助rainfall采纳,获得10
8秒前
10秒前
10秒前
ls003daniel完成签到,获得积分20
11秒前
11秒前
Ava应助我是帅哥采纳,获得10
12秒前
13秒前
michal完成签到,获得积分10
13秒前
TGU2331161488应助哈哈哈哈采纳,获得10
13秒前
桓某人完成签到,获得积分10
14秒前
evermore发布了新的文献求助10
14秒前
14秒前
善良海云完成签到,获得积分10
15秒前
落叶发布了新的文献求助10
15秒前
E-Songfeng发布了新的文献求助10
16秒前
17秒前
脑洞疼应助Juno采纳,获得10
17秒前
大个应助幽默钢笔采纳,获得10
18秒前
桓某人发布了新的文献求助10
20秒前
20秒前
香蕉觅云应助科研通管家采纳,获得10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Atmosphere-ice-ocean interactions in the Antarctic 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3679533
求助须知:如何正确求助?哪些是违规求助? 3232331
关于积分的说明 9802649
捐赠科研通 2943507
什么是DOI,文献DOI怎么找? 1614084
邀请新用户注册赠送积分活动 762049
科研通“疑难数据库(出版商)”最低求助积分说明 737149