化学
解吸
色谱法
聚合物
存水弯(水管)
样品制备
萃取(化学)
热脱附
吸附
甲基丙烯酸
质谱法
分析化学(期刊)
特纳克斯
体积热力学
挥发性有机化合物
共聚物
有机化学
作者
Phillip Trefz,Sabine Kischkel,Dietmar Hein,Eddie A. James,Jochen K. Schubert,Wolfram Miekisch
标识
DOI:10.1016/j.chroma.2011.10.077
摘要
Combining advantages of SPE and SPME needle trap devices (NTD) represent promising new tools for a robust and reproducible sample preparation. This study was intended to investigate the effect of different packing materials on efficacy and reproducibility of VOC analysis by means of needle trap micro extraction (NTME). NTDs with a side hole design and containing different combinations of PDMS, DVB and Carbopack X and Carboxen 1000 and NTDs containing a single layer organic polymer of methacrylic acid and ethylene glycol dimethacrylate were investigated with respect to reproducibility, LODs and LOQs, carry over and storage. NTDs were loaded with VOC standard gas mixtures containing saturated and unsaturated hydrocarbons, oxygenated and aromatic compounds. Volatile substances were thermally desorbed from the NTDs using fast expansive flow technique and separated, identified and quantified by means of GC-MS. Optimal desorption temperatures between 200 and 290°C could be identified for the different types of NTDs with respect to desorption efficiency and variation. Carry over was below 6% for polymer packed needles and up to 67% in PDMS/Carboxen 1000 NTDs. Intra and inter needle variation was best for polymer NTDs and consistently below 9% for this type of NTD. LODs and LOQs were in the range of some ng/L. Sensitivity of the method could be improved by increasing sample volume. NTDs packed with a copolymer of methacrylic acid and ethylene glycol dimethacrylate were universally applicable for sample preparation in VOC analysis. If aromatic compounds were to be determined DVB/Carboxen 1000 and DVB/Carbopack X/Carboxen 1000 devices could be considered as an alternative. PDMS/Carbopack X/Carboxen 1000 NTDs may represent a good alternative for the analysis of hydrocarbons and aldehydes. NTME represents a powerful tool for different application areas, from environmental monitoring to breath analysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI