生物
支持细胞
间质细胞
中肾
睾丸
髓质
器官发生
雄激素受体
内分泌学
中肾管
细胞生物学
内科学
精子发生
基因
遗传学
激素
肾
医学
癌症
胚胎干细胞
促黄体激素
前列腺癌
作者
Gerald R. Cunha,Mei Cao,Sena Aksel,Amber Derpinghaus,Laurence S. Baskin
标识
DOI:10.1016/j.diff.2022.04.002
摘要
The mouse has been used as a model of human organogenesis with the tacit assumption that morphogenetic and molecular mechanisms in mice are translatable to human organogenesis. While many morphogenetic and molecular mechanisms are shared in mice and humans, many anatomic, morphogenetic, and molecular differences have been noted. Two critical gaps in our knowledge prevent meaningful comparisons of mouse versus human testicular development: (a) human testicular development is profoundly under-represented in the literature, and (b) an absence of a detailed day-by-day ontogeny of mouse testicular development from E11.5 to E16.5 encompassing the ambisexual stage to seminiferous cord formation. To address these deficiencies, histologic and immunohistochemical studies were pursued in comparable stages of mouse and human testicular development with a particular emphasis on Leydig, Sertoli and myoid cells through review of the literature and new observations. For example, an androgen-receptor-positive testicular medulla is present in the developing human testis but not in the developing mouse testis. The human testicular medulla and associated mesonephros were historically described as the source of Sertoli cells in seminiferous cords. Consistent with this idea, the profoundly androgen receptor (AR)-positive human testicular medulla was shown to be a zone of mesenchymal to epithelial transition and a zone from which AR-positive cells appear to migrate into the human testicular cortex. While mouse Sertoli and Leydig cells have been proposed to arise from coelomic epithelium, Sertoli (SOX9) or Leydig (HSD3B1) cell markers are absent from the immediate coelomic zone of the developing human testis, perhaps because Leydig and Sertoli cell precursors are undifferentiated when they egress from the coelomic epithelium. The origin of mouse and human myoid cells remains unclear. This study provides a detailed comparison of the early stages of testicular development in human and mouse emphasizing differences in developmental processes.
科研通智能强力驱动
Strongly Powered by AbleSci AI