Evaluation of deep learning approaches for oil & gas pipeline leak detection using wireless sensor networks

计算机科学 管道运输 光谱图 炼油厂 深度学习 人工智能 卷积神经网络 管道(软件) 泄漏(经济) 实时计算 自编码 无线 加速度计 环境科学 电信 环境工程 操作系统 宏观经济学 经济 有机化学 化学 程序设计语言
作者
Christos Spandonidis,P. Theodoropoulos,Fotis Giannopoulos,Nektarios Galiatsatos,Petsa Areti
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:113: 104890-104890 被引量:64
标识
DOI:10.1016/j.engappai.2022.104890
摘要

Pipelines are one of the most common systems for storing and transporting petroleum products, both liquid and gaseous. Despite the durable structures, leakages can occur for many reasons, causing environmental disasters, energy waste, and, in some cases, human losses. The object of the ESTHISIS project is the development of a low-cost and low-energy wireless sensor system for the immediate detection of leaks in metallic piping systems for the transport of liquid and gaseous petroleum products in a noisy industrial environment. In this study, two distinct leakage detection methodologies are presented. First, a 2D-Convolutional Neural Network (CNN) model undertakes supervised classification in spectrograms extracted by the signals acquired by the accelerometers mounted on the pipeline wall. This approach allows us to supplant large-signal datasets with a more memory-efficient alternative to storing static images. The second methodology entails a Long Short-Term Memory Autoencoder (LSTM AE), which directly receives the signals from the accelerometers, providing an unsupervised leakage detection solution. Field tests for the validation of our methods were performed using an experimental pipeline network, while evaluation of their efficiency in a real environment was conducted in the premises of an oil refinery in Greece. Results evince the potency of the LSTM AE to recognize in real-time the emergence of deficiencies and the efficacy of the CNN models to classify accurately spectrograms reflecting the operational condition of the monitored pipelines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
尉迟希望完成签到,获得积分10
刚刚
我刷的烧饼贼亮完成签到 ,获得积分10
刚刚
CodeCraft应助zyman采纳,获得10
刚刚
云雾完成签到 ,获得积分10
1秒前
云ch完成签到,获得积分10
2秒前
jimmyhjy完成签到,获得积分10
2秒前
无尽夏完成签到,获得积分10
3秒前
mk完成签到,获得积分10
3秒前
静一静完成签到,获得积分10
3秒前
cbbb完成签到,获得积分10
4秒前
JevonCheung完成签到 ,获得积分10
4秒前
欢喜小蚂蚁完成签到 ,获得积分10
4秒前
夏天完成签到,获得积分10
4秒前
hustscholar完成签到,获得积分10
4秒前
5秒前
宁静致远QY完成签到,获得积分10
5秒前
情怀应助Ybobo采纳,获得10
5秒前
xiaodong完成签到,获得积分10
5秒前
123发布了新的文献求助50
6秒前
丫头完成签到 ,获得积分10
6秒前
Kai完成签到,获得积分10
6秒前
Emily完成签到,获得积分10
8秒前
尉迟希望完成签到,获得积分10
8秒前
小曾完成签到,获得积分10
8秒前
孤傲的静脉完成签到 ,获得积分10
8秒前
ganjqly发布了新的文献求助10
9秒前
9秒前
zyy完成签到,获得积分10
9秒前
赘婿应助wjw采纳,获得10
10秒前
功不唐捐发布了新的文献求助10
11秒前
Nicole完成签到 ,获得积分10
11秒前
pcy完成签到,获得积分10
12秒前
Pw完成签到,获得积分10
12秒前
虚幻谷秋完成签到,获得积分10
13秒前
13秒前
ZZZ完成签到 ,获得积分10
13秒前
姜菡完成签到,获得积分10
15秒前
俭朴的天曼完成签到,获得积分10
15秒前
淡然的舞仙完成签到,获得积分10
15秒前
LSQ完成签到 ,获得积分10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957182
求助须知:如何正确求助?哪些是违规求助? 3503225
关于积分的说明 11111729
捐赠科研通 3234307
什么是DOI,文献DOI怎么找? 1787887
邀请新用户注册赠送积分活动 870808
科研通“疑难数据库(出版商)”最低求助积分说明 802330