Evaluation of deep learning approaches for oil & gas pipeline leak detection using wireless sensor networks

计算机科学 管道运输 光谱图 炼油厂 深度学习 人工智能 卷积神经网络 管道(软件) 泄漏(经济) 实时计算 自编码 无线 加速度计 环境科学 电信 环境工程 操作系统 宏观经济学 经济 有机化学 化学 程序设计语言
作者
Christos Spandonidis,P. Theodoropoulos,Fotis Giannopoulos,Nektarios Galiatsatos,Petsa Areti
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:113: 104890-104890 被引量:64
标识
DOI:10.1016/j.engappai.2022.104890
摘要

Pipelines are one of the most common systems for storing and transporting petroleum products, both liquid and gaseous. Despite the durable structures, leakages can occur for many reasons, causing environmental disasters, energy waste, and, in some cases, human losses. The object of the ESTHISIS project is the development of a low-cost and low-energy wireless sensor system for the immediate detection of leaks in metallic piping systems for the transport of liquid and gaseous petroleum products in a noisy industrial environment. In this study, two distinct leakage detection methodologies are presented. First, a 2D-Convolutional Neural Network (CNN) model undertakes supervised classification in spectrograms extracted by the signals acquired by the accelerometers mounted on the pipeline wall. This approach allows us to supplant large-signal datasets with a more memory-efficient alternative to storing static images. The second methodology entails a Long Short-Term Memory Autoencoder (LSTM AE), which directly receives the signals from the accelerometers, providing an unsupervised leakage detection solution. Field tests for the validation of our methods were performed using an experimental pipeline network, while evaluation of their efficiency in a real environment was conducted in the premises of an oil refinery in Greece. Results evince the potency of the LSTM AE to recognize in real-time the emergence of deficiencies and the efficacy of the CNN models to classify accurately spectrograms reflecting the operational condition of the monitored pipelines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
楼寒天发布了新的文献求助10
1秒前
陈陌陌完成签到,获得积分10
1秒前
CipherSage应助科研通管家采纳,获得20
2秒前
丘比特应助标致小伙采纳,获得10
2秒前
咸鱼好翻身完成签到,获得积分10
2秒前
NexusExplorer应助科研通管家采纳,获得30
2秒前
北北完成签到 ,获得积分10
2秒前
2秒前
1221211应助科研通管家采纳,获得10
2秒前
2秒前
prosperp应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
剑兰先生应助科研通管家采纳,获得200
2秒前
Judy发布了新的文献求助10
2秒前
Shengwj完成签到,获得积分10
3秒前
科研通AI2S应助科研通管家采纳,获得30
3秒前
Ava应助科研通管家采纳,获得10
3秒前
勤奋沛珊应助科研通管家采纳,获得10
3秒前
大模型应助南城雨落采纳,获得10
3秒前
田様应助科研通管家采纳,获得10
3秒前
Owen应助科研通管家采纳,获得10
3秒前
852应助科研通管家采纳,获得10
3秒前
kingwill应助科研通管家采纳,获得20
3秒前
李健应助科研通管家采纳,获得10
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
BreezyGallery完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
Ava应助科研通管家采纳,获得10
3秒前
3秒前
类囊体薄膜完成签到,获得积分10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
852应助润润轩轩采纳,获得10
4秒前
氨基酸完成签到,获得积分10
4秒前
小月发布了新的文献求助10
4秒前
4秒前
Zzzz完成签到 ,获得积分10
4秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759