Exploration and structure-based engineering of alkenal double bond reductases catalyzing the Cα Cβ double bond reduction of coniferaldehyde

单甘醇 木质素 双键 化学 木质纤维素生物量 有机化学 立体化学 生物合成
作者
Naofumi Kamimura,Shingo Watanabe,Keisuke Sugimoto,Miki Senda,Takuma Araki,Hong Yang Yu,Shojiro Hishiyama,Shinya Kajita,Toshiya Senda,Eiji Masai
出处
期刊:New Biotechnology [Elsevier]
卷期号:68: 57-67 被引量:2
标识
DOI:10.1016/j.nbt.2022.01.007
摘要

Lignin, a complex aromatic polymer, represents a significant obstacle in lignocellulosic biomass utilization. The polymerization of lignin occurs by radical couplings, which mainly form ether and C-C bonds between monolignol units. The chemical stability of these bonds between monolignol units causes the recalcitrant nature of lignin. Since the Cα-Cβ double bond in the monolignols is a crucial chemical feature for the radical coupling, reduction of the double bond would decrease the degree of lignin polymerization, avoiding the recalcitrance of lignin. To develop a method of lignin engineering, we have focused on alkenal double bond reductases (DBR), which can reduce the Cα-Cβ double bond of a monolignol precursor. Here, a novel bacterial DBR from Parvibaculum lavamentivorans DS-1 (PlDBR) was found. This enzyme can reduce the side-chain double bond of coniferaldehyde (CALD) and has a 41% amino-acid sequence identity with CALD DBR from Arabidopsis thaliana (AtDBR). The crystal structure of the PlDBR showed that it has a larger substrate-binding pocket than AtDBR, conferring broader substrate specificity on the former. Structural and mutation analyses of PlDBR and AtDBR suggested that Tyr51 and Try252 are critical residues for the catalytic activity of PlDBR. In addition, Tyr81 of AtDBR appears to cause substrate inhibition. Replacing Tyr81 of AtDBR with a smaller amino-acid residue, as in the AtDBR variants Tyr81Leu and Tyr81Ala, resulted in a substantially higher CALD-reducing activity compared to the wild type. These variants would be promising candidates for lignin manipulation to decrease the recalcitrance of lignocellulosic biomass.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张张发布了新的文献求助10
1秒前
木香发布了新的文献求助10
1秒前
朴实以松发布了新的文献求助10
1秒前
在水一方应助神帅酷哥采纳,获得10
1秒前
2秒前
2秒前
pipge发布了新的文献求助30
2秒前
2秒前
万能图书馆应助卡卡采纳,获得10
2秒前
牛虫虫发布了新的文献求助30
3秒前
3秒前
柔弱飞雪完成签到,获得积分10
3秒前
一种信仰完成签到 ,获得积分10
3秒前
4秒前
4秒前
5秒前
YE完成签到,获得积分10
5秒前
2鱼完成签到,获得积分10
5秒前
FooLeup立仔完成签到,获得积分10
5秒前
6秒前
顾矜应助JUll采纳,获得10
6秒前
Amai发布了新的文献求助20
6秒前
小马甲应助Lucas采纳,获得10
6秒前
7秒前
zZ发布了新的文献求助10
7秒前
qi完成签到,获得积分10
8秒前
标致缘郡发布了新的文献求助10
8秒前
miawei完成签到,获得积分10
9秒前
9秒前
wangfu发布了新的文献求助10
9秒前
明理依云完成签到,获得积分10
9秒前
9秒前
10秒前
二世小卒完成签到 ,获得积分10
10秒前
和谐乌龟完成签到,获得积分10
11秒前
阳尧完成签到,获得积分10
11秒前
帅气惜霜发布了新的文献求助10
11秒前
11秒前
kkkklo发布了新的文献求助30
13秒前
传奇3应助润润轩轩采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794