已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

The development of on-line surface defect detection system for jujubes based on hyperspectral images

高光谱成像 主成分分析 人工智能 支持向量机 模式识别(心理学) 人工神经网络 计算机科学 遥感 地质学
作者
Quoc Thien Pham,Nai-Shang Liou
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:194: 106743-106743 被引量:51
标识
DOI:10.1016/j.compag.2022.106743
摘要

This paper presents the development of an on-line surface defect system using hyperspectral images for jujubes. A push-broom hyperspectral system was built for collecting hyperspectral image data and detecting skin defects of jujube online. Hyperspectral images with an effective wavelength range of 468–950 nm were obtained for jujubes with normal surface or common skin defect types (i.e., russeting, decay, white fungus, black fungus and crack). Support vector machine (SVM) and artificial neural networks (ANN) models were used to classify surface defects of jujubes. The classification accuracies, with the use of full wavelength range, of ANN and SVM models for jujube skin defects are 96.5% and 96.3% respectively. The times required for processing one jujube face are about 25 and 320 s for ANN and SVM models respectively. To reduce the computation time of online classification tasks, spectral bands were selected from a wavelength range of 468–760 nm with equal band intervals or by the principal component analysis (PCA) method. Experimental results showed that the accuracy of SVM and ANN models using 14 bands (469, 491, 513, 535, 558, 580, 602, 624, 646, 668, 691, 713, 735 and 757 nm), selected by equal wavelength intervals, were 94.4% and 95% respectively. And the accuracies of ANN and SVM models with 14 bands (470, 493, 534, 555, 590, 623, 632, 654, 672, 674, 683, 696, 707 and 747) selected by PCA are 95% and 94.6% respectively. The classification time, with the use of 14 bands, of ANN and SVM models for jujube skin defects reduced to 16.6 and 30 s respectively. The online line scanning and classification hyperspectral imaging system can be used for surface defect detection of other fruits.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Chen完成签到,获得积分10
刚刚
1秒前
善学以致用应助XX61采纳,获得10
2秒前
传奇3应助李豆豆采纳,获得10
5秒前
dx完成签到,获得积分10
5秒前
182完成签到,获得积分10
7秒前
科目三应助栀清采纳,获得10
10秒前
182发布了新的文献求助20
10秒前
好运发布了新的文献求助10
11秒前
11秒前
Ge完成签到,获得积分10
12秒前
13秒前
yug完成签到,获得积分10
14秒前
许愿完成签到 ,获得积分10
15秒前
LQX2141完成签到 ,获得积分10
15秒前
万能图书馆应助alansk采纳,获得10
15秒前
16秒前
16秒前
17秒前
17秒前
Cassiel发布了新的文献求助10
18秒前
含章发布了新的文献求助10
18秒前
yug发布了新的文献求助10
19秒前
XX61发布了新的文献求助10
20秒前
21秒前
22秒前
SYLH应助含章采纳,获得10
23秒前
丘比特应助含章采纳,获得10
23秒前
24秒前
深情飞丹完成签到 ,获得积分10
24秒前
不加糖发布了新的文献求助10
24秒前
赵勇完成签到 ,获得积分10
24秒前
26秒前
26秒前
26秒前
俄而发布了新的文献求助10
27秒前
Hello应助云霞采纳,获得10
27秒前
worstbunny完成签到,获得积分10
27秒前
28秒前
30秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3526225
求助须知:如何正确求助?哪些是违规求助? 3106551
关于积分的说明 9280993
捐赠科研通 2804174
什么是DOI,文献DOI怎么找? 1539306
邀请新用户注册赠送积分活动 716529
科研通“疑难数据库(出版商)”最低求助积分说明 709495