The development of on-line surface defect detection system for jujubes based on hyperspectral images

高光谱成像 主成分分析 人工智能 支持向量机 模式识别(心理学) 人工神经网络 计算机科学 遥感 地质学
作者
Quoc Thien Pham,Nai-Shang Liou
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:194: 106743-106743 被引量:51
标识
DOI:10.1016/j.compag.2022.106743
摘要

This paper presents the development of an on-line surface defect system using hyperspectral images for jujubes. A push-broom hyperspectral system was built for collecting hyperspectral image data and detecting skin defects of jujube online. Hyperspectral images with an effective wavelength range of 468–950 nm were obtained for jujubes with normal surface or common skin defect types (i.e., russeting, decay, white fungus, black fungus and crack). Support vector machine (SVM) and artificial neural networks (ANN) models were used to classify surface defects of jujubes. The classification accuracies, with the use of full wavelength range, of ANN and SVM models for jujube skin defects are 96.5% and 96.3% respectively. The times required for processing one jujube face are about 25 and 320 s for ANN and SVM models respectively. To reduce the computation time of online classification tasks, spectral bands were selected from a wavelength range of 468–760 nm with equal band intervals or by the principal component analysis (PCA) method. Experimental results showed that the accuracy of SVM and ANN models using 14 bands (469, 491, 513, 535, 558, 580, 602, 624, 646, 668, 691, 713, 735 and 757 nm), selected by equal wavelength intervals, were 94.4% and 95% respectively. And the accuracies of ANN and SVM models with 14 bands (470, 493, 534, 555, 590, 623, 632, 654, 672, 674, 683, 696, 707 and 747) selected by PCA are 95% and 94.6% respectively. The classification time, with the use of 14 bands, of ANN and SVM models for jujube skin defects reduced to 16.6 and 30 s respectively. The online line scanning and classification hyperspectral imaging system can be used for surface defect detection of other fruits.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助科研通管家采纳,获得10
刚刚
情怀应助科研通管家采纳,获得10
刚刚
华仔应助科研通管家采纳,获得30
刚刚
李爱国应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
华仔应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
1秒前
一团小煤球完成签到,获得积分10
1秒前
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
卡乐瑞咩吹可完成签到,获得积分10
1秒前
田様应助科研通管家采纳,获得10
1秒前
苦咖啡行僧完成签到 ,获得积分10
1秒前
鹤鸣完成签到,获得积分10
2秒前
守望阳光1完成签到,获得积分10
2秒前
正直天空发布了新的文献求助10
2秒前
4秒前
YU发布了新的文献求助10
4秒前
大方元风完成签到 ,获得积分10
4秒前
隐形曼青应助自觉寒梦采纳,获得10
5秒前
ntxlks完成签到,获得积分10
5秒前
祝雲完成签到,获得积分10
5秒前
Spice完成签到 ,获得积分10
6秒前
John完成签到,获得积分20
6秒前
高高诗柳发布了新的文献求助10
7秒前
7秒前
江舟添盛望完成签到 ,获得积分10
9秒前
9秒前
晶晶发布了新的文献求助10
10秒前
大气灵枫发布了新的文献求助10
10秒前
不安的硬币应助DrW采纳,获得10
11秒前
yuanletong完成签到 ,获得积分10
11秒前
趁微风不躁完成签到,获得积分10
12秒前
小灰灰完成签到 ,获得积分10
16秒前
17秒前
miemie完成签到,获得积分10
17秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038388
求助须知:如何正确求助?哪些是违规求助? 3576106
关于积分的说明 11374447
捐赠科研通 3305798
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029