生物材料
生物医学工程
材料科学
组织工程
再生(生物学)
软组织
脚手架
自愈水凝胶
纳米技术
外科
医学
生物
细胞生物学
高分子化学
作者
Amélie Béduer,Martina Genta,Nicolas Kunz,Connor Verheyen,Mariana Martins e Martins,Joé Brefie-Guth,Thomas Braschler
标识
DOI:10.1016/j.actbio.2022.01.050
摘要
Soft tissue reconstruction currently relies on two main approaches, one involving the implantation of external biomaterials and the second one exploiting surgical autologous tissue displacement. While both methods have different advantages and disadvantages, successful long-term solutions for soft tissue repair are still limited. Specifically, volume retention over time and local tissue regeneration are the main challenges in the field. In this study the performance of a recently developed elastic porous injectable (EPI) biomaterial based on crosslinked carboxymethylcellulose is analyzed. Nearly quantitative volumetric stability, with over 90% volume retention at 6 months, is observed, and the pore space of the material is effectively colonized with autologous fibrovascular tissue. A comparative analysis with hyaluronic acid and collagen-based clinical reference materials is also performed. Mechanical stability, evidenced by a low-strain elastic storage modulus (G') approaching 1kPa and a yield strain of several tens of percent, is required for volume retention in-vivo. Macroporosity, along with in-vivo persistence of at least several months, is instead needed for successful host tissue colonization. This study demonstrates the importance of understanding material design criteria and defines the biomaterial requirements for volume retention and tissue colonization in soft tissue regeneration. STATEMENT OF SIGNIFICANCE: We present the design of an elastic, porous, injectable (EPI) scaffold suspension capable of inducing a precisely defined, stable volume of autologous connective tissue in situ. It combines volume stability and vascularized tissue induction capacity known from bulk scaffolds with the ease of injection in shear yielding materials. By comparative study with a series of clinically established biomaterials including a wound healing matrix and dermal fillers, we establish design rules regarding rheological and compressive mechanical properties as well as degradation characteristics that rationally underpin the volume stability and tissue induction in a high-performance biomaterial. These design rules should allow to streamline the development of new colonizable injectables.
科研通智能强力驱动
Strongly Powered by AbleSci AI