An Improved Classification of Pork Adulteration in Beef Based on Electronic Nose Using Modified Deep Extreme Learning with Principal Component Analysis as Feature Learning

电子鼻 主成分分析 极限学习机 人工智能 计算机科学 质量(理念) 模式识别(心理学) 样品(材料) 特征(语言学) 特征提取 过程(计算) 机器学习 数据挖掘 人工神经网络 化学 哲学 语言学 认识论 色谱法 操作系统
作者
Cries Avian,Jenq‐Shiou Leu,Setya Widyawan Prakosa,Muhamad Faisal
出处
期刊:Food Analytical Methods [Springer Science+Business Media]
卷期号:15 (11): 3020-3031 被引量:24
标识
DOI:10.1007/s12161-022-02361-9
摘要

Rapid meat consumption for human diets is causing a considerable production demand to fulfill. Due to many factors, such as economic problems, the adulteration problem of mixing meat with low-quality prices rises and affects the quality of food, bringing the issues to the health aspect. Therefore, it is necessary to ensure that the meat quality can be maintained by guaranteeing the process and the quality. The electronic nose (e-nose) is proposed to guarantee the process. However, recent research found that e-nose still suffers an issue of requiring a specific amount of time or several cycles to classify the meat sample. It happened because a feature extraction requires accumulating the data before extracting the signal into particular characteristics. It may affect the accumulation of processing time if repeated testing for meat samples. Therefore, this study proposes a new approach to accelerate classifying by removing the feature extraction block and applying the deep extreme learning machine (D-ELM). The powerful D-ELM method is then combined with principal component analysis (PCA) to classify pork adulteration in beef. The experiment shows that the proposed model achieved an accuracy of 99.97% in the tenfold cross-validation to classify seven mixed adulteration meat. In addition, the proposed method required within reach average execution time for model 4.014 s (one cycle after sensor sent signal) compared to previous research that needs more than 60 s (60 cycles) for evaluating a sample.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI5应助踏雪飞鸿采纳,获得10
1秒前
文静大娘发布了新的文献求助10
2秒前
Lzx完成签到,获得积分10
2秒前
3秒前
4秒前
6秒前
Hello应助aaaa采纳,获得10
7秒前
吃花生酱的猫完成签到,获得积分10
8秒前
777发布了新的文献求助10
8秒前
9秒前
shunlu完成签到,获得积分10
10秒前
10秒前
大大大大管子完成签到 ,获得积分10
10秒前
老阳发布了新的文献求助10
10秒前
CodeCraft应助大尾巴鱼采纳,获得30
12秒前
13秒前
年少轻狂最情深完成签到 ,获得积分10
15秒前
16秒前
16秒前
17秒前
pentjy完成签到,获得积分10
17秒前
充电宝应助追佩奇十条街采纳,获得10
18秒前
20秒前
垚焱发布了新的文献求助10
21秒前
凌兰发布了新的文献求助10
21秒前
22秒前
23秒前
ZhagIce发布了新的文献求助10
23秒前
Moislad发布了新的文献求助10
25秒前
26秒前
aaaa发布了新的文献求助10
26秒前
26秒前
bkagyin应助lsy采纳,获得10
28秒前
29秒前
Lin完成签到 ,获得积分10
29秒前
隐形曼青应助听雨采纳,获得10
30秒前
1vvvv发布了新的文献求助10
30秒前
32秒前
小蜗牛完成签到,获得积分10
32秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738641
求助须知:如何正确求助?哪些是违规求助? 3281995
关于积分的说明 10027164
捐赠科研通 2998750
什么是DOI,文献DOI怎么找? 1645450
邀请新用户注册赠送积分活动 782802
科研通“疑难数据库(出版商)”最低求助积分说明 749972