已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep convolutional generative adversarial networks for the generation of numerous artificial spectrum‐compatible earthquake accelerograms using a limited number of ground motion records

稳健性(进化) 计算机科学 生成语法 地震动 深度学习 生成对抗网络 领域(数学) 地震模拟 对抗制 人工智能 工程类 结构工程 数学 基因 生物化学 化学 纯数学
作者
Mehrshad Matinfar,Naser Khaji,Goodarz Ahmadi
出处
期刊:Computer-aided Civil and Infrastructure Engineering [Wiley]
卷期号:38 (2): 225-240 被引量:41
标识
DOI:10.1111/mice.12852
摘要

Abstract Deep learning (DL) methodologies have been recently employed to solve various civil and earthquake engineering problems. Nevertheless, due to the limited number of reliable data in the field of earthquake engineering, it is not convenient to obtain accurate results using DL. To tackle this challenge, the generative adversarial network (GAN) approach may be considered a reliable possible candidate. GANs have been introduced as an efficient way to train generative models. GANs exhibited their capabilities as well as versatility in the field of image production. For nonlinear dynamic analyses of structures, artificial ground accelerograms that are compatible with a target response spectrum are usually generated. In this paper, an efficient algorithm is proposed by which numerous artificial spectrum‐compatible earthquake accelerograms are generated using a few ground motion records. For this purpose, a specific well‐established generative model, namely, the deep convolutional GAN (DCGAN), is adopted for the first time and used. It is shown that DCGAN can easily generate desirable artificial ground accelerograms by having a limited number of seismic records as input to train the network. To quantitatively demonstrate the quality of the artificial ground accelerograms generated by the DCGAN, several computer experiments are presented, among which the robustness and feasibility of the proposed method are examined by using only four earthquake accelerograms as the worst scenario. Moreover, the efficiency of the DCGAN is illustrated by comparing various seismic parameters and the spectral response of the generated accelerograms with those of the actual accelerograms. The outcomes illustrate the efficiency and robustness of the presented DCGAN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
过过过完成签到 ,获得积分10
1秒前
半斤完成签到 ,获得积分10
2秒前
科研通AI5应助rpe采纳,获得10
3秒前
4秒前
共享精神应助寒冷天亦采纳,获得10
5秒前
动漫大师发布了新的文献求助10
5秒前
9秒前
Steven完成签到,获得积分10
12秒前
12秒前
13秒前
ZMX发布了新的文献求助10
14秒前
Shengee完成签到,获得积分10
15秒前
Shengee发布了新的文献求助10
18秒前
赵123发布了新的文献求助10
20秒前
活力的之槐完成签到 ,获得积分10
20秒前
Hana完成签到 ,获得积分10
24秒前
polite完成签到 ,获得积分10
27秒前
27秒前
尘尘完成签到,获得积分10
27秒前
orixero应助郭焕玉采纳,获得10
28秒前
30秒前
赵123完成签到,获得积分10
30秒前
Xiaoyuan发布了新的文献求助10
33秒前
llnysl完成签到 ,获得积分10
33秒前
寒冷天亦发布了新的文献求助10
36秒前
hh发布了新的文献求助10
38秒前
勤奋的饼干完成签到 ,获得积分10
41秒前
栀虞完成签到,获得积分20
43秒前
坚定的泥猴桃完成签到 ,获得积分10
43秒前
45秒前
45秒前
单薄怜寒完成签到 ,获得积分10
46秒前
46秒前
栀虞发布了新的文献求助30
48秒前
权箴完成签到,获得积分10
48秒前
思源应助Yuu采纳,获得10
49秒前
51秒前
yydtly发布了新的文献求助10
51秒前
51秒前
鹏程万里发布了新的文献求助10
52秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671119
求助须知:如何正确求助?哪些是违规求助? 3228030
关于积分的说明 9778011
捐赠科研通 2938277
什么是DOI,文献DOI怎么找? 1609784
邀请新用户注册赠送积分活动 760461
科研通“疑难数据库(出版商)”最低求助积分说明 735962