Bio-inspired leaf-vein type fins for performance enhancement of metal hydride reactors

氢化物 材料科学 传热 氢气储存 强化传热 放热反应 管(容器) 核工程 机械工程 机械 复合材料 化学 合金 金属 冶金 工程类 传热系数 物理 有机化学
作者
K. Venkata Krishna,Vivek Pandey,M.P. Maiya
出处
期刊:International Journal of Hydrogen Energy [Elsevier]
卷期号:47 (56): 23694-23709 被引量:32
标识
DOI:10.1016/j.ijhydene.2022.05.163
摘要

Hydrogenation of metals is an exothermic and reversible process. Thus, metal hydride reactors/devices become essentially heat-driven. Excellent heat control in the MH reactor is required to develop metal hydride devices such as H2 storage systems successfully. Few attempts at nature-inspired designs have proven to have good heat transfer capabilities. Based on this idea, the present study investigates novel bio-inspired leaf-vein type fins for the metal hydride reactor. Two reactor designs are proposed for heat transfer fluid flow, namely (i) central straight tube and (ii) narrow trapezoidal channels with 10 kg of LaNi 5 as a sample alloy. Compared to longitudinal finned single tube reactors (LFSTR), these designs provided better heat transmission and temperature uniformity. For LFSTR, Case-1, and Case-2, 90% storage capacity was reached in 210, 145, and 80 s. Different fin configurations, such as parallel, inclined fins, and fins of different thicknesses, are investigated further in the design with narrow trapezoidal channels. The inclined fin configuration shows better performance, and it is further optimized by varying the inclination angle from 3 to 9° and the fin number from 2 to 4. The optimized design with a 7° inclination angle and four fins required 57 s to attain 90% storage capacity and reduced absorption time by 73% compared to LFSTR. The influence of operating parameters such as hydrogen supply pressure, inlet temperature, and velocity of the heat transfer fluid on the performance is evaluated for the optimized design. • Novel bio-inspired leaf-vein-shaped fins are proposed for the metal hydride reactor. • Absorption time is reduced by 62% with leaf-type fins compared to basic design. • The design is optimized by varying fin inclination angle and fin number. • The optimal design is achieved with four fins with a 7° fin inclination angle.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丁小丁发布了新的文献求助10
1秒前
1秒前
wanci应助吴欣欣采纳,获得10
3秒前
4秒前
十三完成签到,获得积分10
4秒前
李国民发布了新的文献求助20
5秒前
充电宝应助yujie采纳,获得10
5秒前
风趣的爆米花完成签到,获得积分10
5秒前
范博发布了新的文献求助10
5秒前
毛头侠发布了新的文献求助10
5秒前
单薄的蓝天完成签到,获得积分10
5秒前
mengtian发布了新的文献求助10
5秒前
脑洞疼应助王鹏飞采纳,获得10
6秒前
6秒前
6秒前
迟大猫应助丫丫采纳,获得10
6秒前
gcc应助IVAN采纳,获得20
7秒前
Why完成签到,获得积分10
7秒前
7秒前
7秒前
robust66完成签到,获得积分10
9秒前
向日繁花发布了新的文献求助10
9秒前
jiangjiang发布了新的文献求助150
9秒前
meng发布了新的文献求助10
11秒前
冬05发布了新的文献求助30
11秒前
11秒前
11秒前
刘唐荣发布了新的文献求助10
11秒前
Yue关注了科研通微信公众号
11秒前
robust66发布了新的文献求助10
12秒前
帝国超级硕士完成签到,获得积分10
12秒前
diuwaitao完成签到,获得积分10
13秒前
Jasper应助斯文鸡采纳,获得10
13秒前
15秒前
15秒前
15秒前
FashionBoy应助江秋寒采纳,获得10
15秒前
你猜我猜不猜你在猜完成签到,获得积分10
16秒前
李归来完成签到 ,获得积分10
17秒前
开始啦完成签到,获得积分10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
Time Matters: On Theory and Method 500
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3559156
求助须知:如何正确求助?哪些是违规求助? 3133718
关于积分的说明 9403929
捐赠科研通 2833973
什么是DOI,文献DOI怎么找? 1557731
邀请新用户注册赠送积分活动 727632
科研通“疑难数据库(出版商)”最低求助积分说明 716383