Automatic Segmentation and Quantification of Upper Airway Anatomic Risk Factors for Obstructive Sleep Apnea on Unprocessed Magnetic Resonance Images

Sørensen–骰子系数 磁共振成像 舌头 分割 气道 阻塞性睡眠呼吸暂停 计算机科学 相关系数 人工智能 模式识别(心理学) 舌骨 医学 卷积神经网络 放射科 图像分割 解剖 病理 内科学 机器学习 外科
作者
Vikas Bommineni,Güray Erus,Jimit Doshi,Ashish Singh,Brendan T Keenan,Richard J. Schwab,Andrew Wiemken,Christos Davatzikos
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:30 (3): 421-430 被引量:9
标识
DOI:10.1016/j.acra.2022.04.023
摘要

Accurate segmentation of the upper airway lumen and surrounding soft tissue anatomy, especially tongue fat, using magnetic resonance images is crucial for evaluating the role of anatomic risk factors in the pathogenesis of obstructive sleep apnea (OSA). We present a convolutional neural network to automatically segment and quantify upper airway structures that are known OSA risk factors from unprocessed magnetic resonance images.Four datasets (n = [31, 35, 64, 76]) with T1-weighted scans and manually delineated labels of 10 regions of interest were used for model training and validations. We investigated a modified U-Net architecture that uses multiple convolution filter sizes to achieve multi-scale feature extraction. Validations included four-fold cross-validation and leave-study-out validations to measure generalization ability of the trained models. Automatic segmentations were also used to calculate the tongue fat ratio, a biomarker of OSA. Dice coefficient, Pearson's correlation, agreement analyses, and expert-derived clinical parameters were used to evaluate segmentations and tongue fat ratio values.Cross-validated mean Dice coefficient across all regions of interests and scans was 0.70 ± 0.10 with highest mean Dice coefficient in the tongue (0.89) and mandible (0.81). The accuracy was consistent across all four folds. Also, leave-study-out validations obtained comparable accuracy across uniquely acquired datasets. Segmented volumes and the derived tongue fat ratio values showed high correlation with manual measurements, with differences that were not statistically significant (p < 0.05).High accuracy of automated segmentations indicate translational potential of the proposed method to replace time consuming manual segmentation tasks in clinical settings and large-scale research studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助赵丽红采纳,获得10
刚刚
ding应助赵丽红采纳,获得10
刚刚
在水一方应助赵丽红采纳,获得10
刚刚
慕青应助JINGJING采纳,获得20
1秒前
1秒前
考研大拿完成签到,获得积分10
1秒前
热心的银耳汤完成签到 ,获得积分10
1秒前
范户晓发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
2秒前
3秒前
浮游应助sisi采纳,获得10
4秒前
科研通AI5应助契心采纳,获得10
4秒前
black456发布了新的文献求助10
4秒前
深情安青应助A你采纳,获得10
4秒前
5秒前
谭代涛发布了新的文献求助10
5秒前
6秒前
萱瑄爸爸发布了新的文献求助10
6秒前
6秒前
7秒前
充电宝应助踏实煎饼采纳,获得10
7秒前
尊敬毛豆发布了新的文献求助10
7秒前
7秒前
polarbear发布了新的文献求助10
7秒前
evergarden发布了新的文献求助30
8秒前
8秒前
fujuzhang完成签到 ,获得积分10
9秒前
159发布了新的文献求助10
9秒前
钱美杉发布了新的文献求助10
9秒前
dfghjkl发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
11秒前
华仔应助hyishu采纳,获得10
11秒前
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Technical Report No. 22 (Revised 2025): Process Simulation for Aseptically Filled Products 500
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5016248
求助须知:如何正确求助?哪些是违规求助? 4256302
关于积分的说明 13264360
捐赠科研通 4060256
什么是DOI,文献DOI怎么找? 2220809
邀请新用户注册赠送积分活动 1230053
关于科研通互助平台的介绍 1152671