Automatic Segmentation and Quantification of Upper Airway Anatomic Risk Factors for Obstructive Sleep Apnea on Unprocessed Magnetic Resonance Images

Sørensen–骰子系数 磁共振成像 舌头 分割 气道 阻塞性睡眠呼吸暂停 计算机科学 相关系数 人工智能 模式识别(心理学) 舌骨 医学 卷积神经网络 放射科 图像分割 解剖 病理 内科学 机器学习 外科
作者
Vikas Bommineni,Güray Erus,Jimit Doshi,Ashish Singh,Brendan T Keenan,Richard J. Schwab,Andrew Wiemken,Christos Davatzikos
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:30 (3): 421-430 被引量:9
标识
DOI:10.1016/j.acra.2022.04.023
摘要

Accurate segmentation of the upper airway lumen and surrounding soft tissue anatomy, especially tongue fat, using magnetic resonance images is crucial for evaluating the role of anatomic risk factors in the pathogenesis of obstructive sleep apnea (OSA). We present a convolutional neural network to automatically segment and quantify upper airway structures that are known OSA risk factors from unprocessed magnetic resonance images.Four datasets (n = [31, 35, 64, 76]) with T1-weighted scans and manually delineated labels of 10 regions of interest were used for model training and validations. We investigated a modified U-Net architecture that uses multiple convolution filter sizes to achieve multi-scale feature extraction. Validations included four-fold cross-validation and leave-study-out validations to measure generalization ability of the trained models. Automatic segmentations were also used to calculate the tongue fat ratio, a biomarker of OSA. Dice coefficient, Pearson's correlation, agreement analyses, and expert-derived clinical parameters were used to evaluate segmentations and tongue fat ratio values.Cross-validated mean Dice coefficient across all regions of interests and scans was 0.70 ± 0.10 with highest mean Dice coefficient in the tongue (0.89) and mandible (0.81). The accuracy was consistent across all four folds. Also, leave-study-out validations obtained comparable accuracy across uniquely acquired datasets. Segmented volumes and the derived tongue fat ratio values showed high correlation with manual measurements, with differences that were not statistically significant (p < 0.05).High accuracy of automated segmentations indicate translational potential of the proposed method to replace time consuming manual segmentation tasks in clinical settings and large-scale research studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小豪完成签到,获得积分10
1秒前
大海123完成签到,获得积分10
1秒前
wbp31驳回了情怀应助
1秒前
jie酱拌面应助山上的树采纳,获得10
2秒前
吴剑宇发布了新的文献求助10
3秒前
3秒前
大宏发布了新的文献求助30
3秒前
aktuell发布了新的文献求助30
4秒前
5秒前
QQ完成签到,获得积分10
5秒前
上官若男应助亓大大采纳,获得10
6秒前
dd完成签到 ,获得积分10
6秒前
6秒前
庸俗完成签到,获得积分20
7秒前
7秒前
黄晓梅给黄晓梅的求助进行了留言
7秒前
隐形曼青应助gbr0519采纳,获得10
8秒前
风中尔蝶关注了科研通微信公众号
8秒前
小二郎应助tz采纳,获得10
8秒前
梨子发布了新的文献求助10
8秒前
1134695021完成签到,获得积分10
9秒前
9秒前
轻松完成签到,获得积分10
9秒前
赘婿应助春儿采纳,获得10
9秒前
闾丘惜萱完成签到,获得积分10
9秒前
9秒前
10秒前
科研通AI5应助小黄采纳,获得10
10秒前
申左一发布了新的文献求助10
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
斜玉发布了新的文献求助10
11秒前
zcs完成签到,获得积分10
11秒前
大模型应助吴剑宇采纳,获得10
12秒前
12秒前
小蘑菇应助随便吧采纳,获得10
13秒前
trust发布了新的文献求助10
13秒前
15秒前
16秒前
李哈哈发布了新的文献求助10
16秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603700
求助须知:如何正确求助?哪些是违规求助? 4012310
关于积分的说明 12423171
捐赠科研通 3692797
什么是DOI,文献DOI怎么找? 2035913
邀请新用户注册赠送积分活动 1068997
科研通“疑难数据库(出版商)”最低求助积分说明 953482