Automatic Segmentation and Quantification of Upper Airway Anatomic Risk Factors for Obstructive Sleep Apnea on Unprocessed Magnetic Resonance Images

Sørensen–骰子系数 磁共振成像 舌头 分割 气道 阻塞性睡眠呼吸暂停 计算机科学 相关系数 人工智能 模式识别(心理学) 舌骨 医学 卷积神经网络 放射科 图像分割 解剖 病理 内科学 机器学习 外科
作者
Vikas Bommineni,Güray Erus,Jimit Doshi,Ashish Singh,Brendan T Keenan,Richard J. Schwab,Andrew Wiemken,Christos Davatzikos
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:30 (3): 421-430 被引量:9
标识
DOI:10.1016/j.acra.2022.04.023
摘要

Accurate segmentation of the upper airway lumen and surrounding soft tissue anatomy, especially tongue fat, using magnetic resonance images is crucial for evaluating the role of anatomic risk factors in the pathogenesis of obstructive sleep apnea (OSA). We present a convolutional neural network to automatically segment and quantify upper airway structures that are known OSA risk factors from unprocessed magnetic resonance images.Four datasets (n = [31, 35, 64, 76]) with T1-weighted scans and manually delineated labels of 10 regions of interest were used for model training and validations. We investigated a modified U-Net architecture that uses multiple convolution filter sizes to achieve multi-scale feature extraction. Validations included four-fold cross-validation and leave-study-out validations to measure generalization ability of the trained models. Automatic segmentations were also used to calculate the tongue fat ratio, a biomarker of OSA. Dice coefficient, Pearson's correlation, agreement analyses, and expert-derived clinical parameters were used to evaluate segmentations and tongue fat ratio values.Cross-validated mean Dice coefficient across all regions of interests and scans was 0.70 ± 0.10 with highest mean Dice coefficient in the tongue (0.89) and mandible (0.81). The accuracy was consistent across all four folds. Also, leave-study-out validations obtained comparable accuracy across uniquely acquired datasets. Segmented volumes and the derived tongue fat ratio values showed high correlation with manual measurements, with differences that were not statistically significant (p < 0.05).High accuracy of automated segmentations indicate translational potential of the proposed method to replace time consuming manual segmentation tasks in clinical settings and large-scale research studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shinnosuke发布了新的文献求助10
2秒前
甜甜的紫菜完成签到 ,获得积分10
3秒前
hu发布了新的文献求助10
4秒前
bkagyin应助sx采纳,获得10
4秒前
上好佳完成签到,获得积分10
4秒前
4秒前
认真的砖头完成签到 ,获得积分10
4秒前
5秒前
xiaoxin发布了新的文献求助10
6秒前
6秒前
yuan1226完成签到,获得积分10
6秒前
平常的狗应助淡然绝山采纳,获得10
7秒前
蓝色白羊完成签到,获得积分10
7秒前
8秒前
嗯哼完成签到,获得积分10
10秒前
10秒前
ccyy完成签到 ,获得积分10
11秒前
KDS发布了新的文献求助10
11秒前
橙子加油发布了新的文献求助10
11秒前
12秒前
九千七发布了新的文献求助10
12秒前
故渊完成签到,获得积分10
12秒前
万能图书馆应助过氧化氢采纳,获得20
13秒前
yan完成签到,获得积分10
14秒前
黑黑黑发布了新的文献求助10
14秒前
万能图书馆应助环游水星采纳,获得10
14秒前
阿良完成签到,获得积分10
15秒前
Joe完成签到 ,获得积分10
15秒前
8564523完成签到,获得积分10
16秒前
dandan完成签到,获得积分10
16秒前
单薄的夜南应助Connie采纳,获得10
16秒前
啦啦啦完成签到,获得积分10
16秒前
17秒前
小马过河应助小汤圆采纳,获得10
17秒前
九千七完成签到,获得积分20
17秒前
皮划艇发布了新的文献求助30
17秒前
Firenze完成签到,获得积分20
18秒前
浪浪山第一酷完成签到,获得积分10
18秒前
Dr_R完成签到,获得积分10
18秒前
KDS完成签到,获得积分10
18秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987223
求助须知:如何正确求助?哪些是违规求助? 3529513
关于积分的说明 11245651
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804027
邀请新用户注册赠送积分活动 881303
科研通“疑难数据库(出版商)”最低求助积分说明 808650