Automatic Segmentation and Quantification of Upper Airway Anatomic Risk Factors for Obstructive Sleep Apnea on Unprocessed Magnetic Resonance Images

Sørensen–骰子系数 磁共振成像 舌头 分割 气道 阻塞性睡眠呼吸暂停 计算机科学 相关系数 人工智能 模式识别(心理学) 舌骨 医学 卷积神经网络 放射科 图像分割 解剖 病理 内科学 机器学习 外科
作者
Vikas Bommineni,Güray Erus,Jimit Doshi,Ashish Singh,Brendan T Keenan,Richard J. Schwab,Andrew Wiemken,Christos Davatzikos
出处
期刊:Academic Radiology [Elsevier]
卷期号:30 (3): 421-430 被引量:9
标识
DOI:10.1016/j.acra.2022.04.023
摘要

Accurate segmentation of the upper airway lumen and surrounding soft tissue anatomy, especially tongue fat, using magnetic resonance images is crucial for evaluating the role of anatomic risk factors in the pathogenesis of obstructive sleep apnea (OSA). We present a convolutional neural network to automatically segment and quantify upper airway structures that are known OSA risk factors from unprocessed magnetic resonance images.Four datasets (n = [31, 35, 64, 76]) with T1-weighted scans and manually delineated labels of 10 regions of interest were used for model training and validations. We investigated a modified U-Net architecture that uses multiple convolution filter sizes to achieve multi-scale feature extraction. Validations included four-fold cross-validation and leave-study-out validations to measure generalization ability of the trained models. Automatic segmentations were also used to calculate the tongue fat ratio, a biomarker of OSA. Dice coefficient, Pearson's correlation, agreement analyses, and expert-derived clinical parameters were used to evaluate segmentations and tongue fat ratio values.Cross-validated mean Dice coefficient across all regions of interests and scans was 0.70 ± 0.10 with highest mean Dice coefficient in the tongue (0.89) and mandible (0.81). The accuracy was consistent across all four folds. Also, leave-study-out validations obtained comparable accuracy across uniquely acquired datasets. Segmented volumes and the derived tongue fat ratio values showed high correlation with manual measurements, with differences that were not statistically significant (p < 0.05).High accuracy of automated segmentations indicate translational potential of the proposed method to replace time consuming manual segmentation tasks in clinical settings and large-scale research studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
冯雨宁完成签到,获得积分10
刚刚
2秒前
木木夕发布了新的文献求助10
2秒前
2秒前
2秒前
liss完成签到 ,获得积分10
3秒前
4秒前
4秒前
桐桐应助101采纳,获得30
4秒前
4秒前
4秒前
yu发布了新的文献求助10
5秒前
LC完成签到,获得积分10
5秒前
ZhouZhou发布了新的文献求助10
5秒前
5秒前
kiide完成签到,获得积分10
6秒前
7秒前
8秒前
wangli发布了新的文献求助10
9秒前
ppprotein发布了新的文献求助10
9秒前
zx发布了新的文献求助10
10秒前
上官若男应助阔达的冷霜采纳,获得10
10秒前
Owen应助不冬眠采纳,获得10
10秒前
SCL发布了新的文献求助10
10秒前
研友_nPoXoL发布了新的文献求助10
10秒前
11秒前
11秒前
koi完成签到,获得积分20
12秒前
FashionBoy应助小p采纳,获得30
12秒前
dmm完成签到,获得积分10
12秒前
ZHG完成签到,获得积分10
13秒前
Q11发布了新的文献求助10
13秒前
希望天下0贩的0应助虾虾采纳,获得10
13秒前
希望天下0贩的0应助煜琪采纳,获得10
14秒前
搜集达人应助复方蛋酥卷采纳,获得10
15秒前
Hello应助wangli采纳,获得10
15秒前
RONG发布了新的文献求助10
16秒前
17秒前
斯文败类应助张天成采纳,获得10
17秒前
TAN完成签到 ,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 600
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5492432
求助须知:如何正确求助?哪些是违规求助? 4590523
关于积分的说明 14430879
捐赠科研通 4522998
什么是DOI,文献DOI怎么找? 2478115
邀请新用户注册赠送积分活动 1463158
关于科研通互助平台的介绍 1435830