Automatic Segmentation and Quantification of Upper Airway Anatomic Risk Factors for Obstructive Sleep Apnea on Unprocessed Magnetic Resonance Images

Sørensen–骰子系数 磁共振成像 舌头 分割 气道 阻塞性睡眠呼吸暂停 计算机科学 相关系数 人工智能 模式识别(心理学) 舌骨 医学 卷积神经网络 放射科 图像分割 解剖 病理 内科学 机器学习 外科
作者
Vikas Bommineni,Güray Erus,Jimit Doshi,Ashish Singh,Brendan T Keenan,Richard J. Schwab,Andrew Wiemken,Christos Davatzikos
出处
期刊:Academic Radiology [Elsevier]
卷期号:30 (3): 421-430 被引量:9
标识
DOI:10.1016/j.acra.2022.04.023
摘要

Accurate segmentation of the upper airway lumen and surrounding soft tissue anatomy, especially tongue fat, using magnetic resonance images is crucial for evaluating the role of anatomic risk factors in the pathogenesis of obstructive sleep apnea (OSA). We present a convolutional neural network to automatically segment and quantify upper airway structures that are known OSA risk factors from unprocessed magnetic resonance images.Four datasets (n = [31, 35, 64, 76]) with T1-weighted scans and manually delineated labels of 10 regions of interest were used for model training and validations. We investigated a modified U-Net architecture that uses multiple convolution filter sizes to achieve multi-scale feature extraction. Validations included four-fold cross-validation and leave-study-out validations to measure generalization ability of the trained models. Automatic segmentations were also used to calculate the tongue fat ratio, a biomarker of OSA. Dice coefficient, Pearson's correlation, agreement analyses, and expert-derived clinical parameters were used to evaluate segmentations and tongue fat ratio values.Cross-validated mean Dice coefficient across all regions of interests and scans was 0.70 ± 0.10 with highest mean Dice coefficient in the tongue (0.89) and mandible (0.81). The accuracy was consistent across all four folds. Also, leave-study-out validations obtained comparable accuracy across uniquely acquired datasets. Segmented volumes and the derived tongue fat ratio values showed high correlation with manual measurements, with differences that were not statistically significant (p < 0.05).High accuracy of automated segmentations indicate translational potential of the proposed method to replace time consuming manual segmentation tasks in clinical settings and large-scale research studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈哈哈完成签到 ,获得积分10
刚刚
李国华完成签到,获得积分10
刚刚
Mic完成签到,获得积分0
刚刚
刚刚
量子星尘发布了新的文献求助10
1秒前
1秒前
无情的宛菡完成签到 ,获得积分10
2秒前
zxk发布了新的文献求助10
2秒前
科目三应助贝妮采纳,获得10
2秒前
远山完成签到,获得积分10
2秒前
科研通AI6应助苗条的静白采纳,获得200
3秒前
Yeee完成签到,获得积分10
3秒前
圆锥香蕉应助Hurob采纳,获得20
3秒前
hydrazine发布了新的文献求助10
4秒前
4秒前
科研通AI6应助aifd采纳,获得10
4秒前
科研通AI6应助科研狗采纳,获得10
4秒前
4秒前
蕾子完成签到,获得积分10
4秒前
4秒前
小苏哥哥发布了新的文献求助10
4秒前
YB完成签到,获得积分10
4秒前
4秒前
6秒前
6秒前
义气的妙松完成签到,获得积分10
6秒前
西红柿炒番茄完成签到,获得积分20
6秒前
7秒前
SciGPT应助123采纳,获得10
7秒前
李国华发布了新的文献求助10
7秒前
7秒前
8秒前
虚心凡灵发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
吼吼哈哈完成签到,获得积分10
9秒前
一粒尘埃完成签到,获得积分10
9秒前
9秒前
灰鸽舞完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5433563
求助须知:如何正确求助?哪些是违规求助? 4545956
关于积分的说明 14199843
捐赠科研通 4465748
什么是DOI,文献DOI怎么找? 2447658
邀请新用户注册赠送积分活动 1438788
关于科研通互助平台的介绍 1415767