Automatic Segmentation and Quantification of Upper Airway Anatomic Risk Factors for Obstructive Sleep Apnea on Unprocessed Magnetic Resonance Images

Sørensen–骰子系数 磁共振成像 舌头 分割 气道 阻塞性睡眠呼吸暂停 计算机科学 相关系数 人工智能 模式识别(心理学) 舌骨 医学 卷积神经网络 放射科 图像分割 解剖 病理 内科学 机器学习 外科
作者
Vikas Bommineni,Güray Erus,Jimit Doshi,Ashish Singh,Brendan T Keenan,Richard J. Schwab,Andrew Wiemken,Christos Davatzikos
出处
期刊:Academic Radiology [Elsevier]
卷期号:30 (3): 421-430 被引量:9
标识
DOI:10.1016/j.acra.2022.04.023
摘要

Accurate segmentation of the upper airway lumen and surrounding soft tissue anatomy, especially tongue fat, using magnetic resonance images is crucial for evaluating the role of anatomic risk factors in the pathogenesis of obstructive sleep apnea (OSA). We present a convolutional neural network to automatically segment and quantify upper airway structures that are known OSA risk factors from unprocessed magnetic resonance images.Four datasets (n = [31, 35, 64, 76]) with T1-weighted scans and manually delineated labels of 10 regions of interest were used for model training and validations. We investigated a modified U-Net architecture that uses multiple convolution filter sizes to achieve multi-scale feature extraction. Validations included four-fold cross-validation and leave-study-out validations to measure generalization ability of the trained models. Automatic segmentations were also used to calculate the tongue fat ratio, a biomarker of OSA. Dice coefficient, Pearson's correlation, agreement analyses, and expert-derived clinical parameters were used to evaluate segmentations and tongue fat ratio values.Cross-validated mean Dice coefficient across all regions of interests and scans was 0.70 ± 0.10 with highest mean Dice coefficient in the tongue (0.89) and mandible (0.81). The accuracy was consistent across all four folds. Also, leave-study-out validations obtained comparable accuracy across uniquely acquired datasets. Segmented volumes and the derived tongue fat ratio values showed high correlation with manual measurements, with differences that were not statistically significant (p < 0.05).High accuracy of automated segmentations indicate translational potential of the proposed method to replace time consuming manual segmentation tasks in clinical settings and large-scale research studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白杨完成签到 ,获得积分10
刚刚
zsq完成签到,获得积分10
1秒前
慕青应助dizzy采纳,获得10
1秒前
隐形曼青应助QQ酱采纳,获得10
1秒前
剑逍遥完成签到 ,获得积分10
2秒前
白华苍松发布了新的文献求助10
3秒前
lcx发布了新的文献求助10
4秒前
星星完成签到,获得积分10
9秒前
Simon发布了新的文献求助10
10秒前
Julianne关注了科研通微信公众号
10秒前
11秒前
善学以致用应助王大贵采纳,获得10
11秒前
12秒前
wanli完成签到,获得积分10
12秒前
13秒前
13秒前
lcx完成签到,获得积分20
14秒前
顾矜应助cyt9999采纳,获得10
14秒前
15秒前
Owen应助晨风采纳,获得10
15秒前
Lionnn发布了新的文献求助10
15秒前
微微发布了新的文献求助10
16秒前
郑雪红发布了新的文献求助10
16秒前
19秒前
chaichi完成签到,获得积分10
19秒前
WELXCNK完成签到,获得积分10
19秒前
Dr-Luo完成签到,获得积分10
19秒前
小咩发布了新的文献求助10
20秒前
一枚研究僧应助甜崽采纳,获得10
20秒前
22秒前
more应助果粒杨采纳,获得20
23秒前
QQ酱发布了新的文献求助10
24秒前
路在脚下完成签到 ,获得积分10
27秒前
Lionnn完成签到 ,获得积分10
29秒前
30秒前
31秒前
善学以致用应助QQ酱采纳,获得10
31秒前
隐形的含之完成签到,获得积分10
32秒前
领导范儿应助Locus采纳,获得10
32秒前
33秒前
高分求助中
Earth System Geophysics 1000
Co-opetition under Endogenous Bargaining Power 666
Medicina di laboratorio. Logica e patologia clinica 600
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3212535
求助须知:如何正确求助?哪些是违规求助? 2861461
关于积分的说明 8128753
捐赠科研通 2527386
什么是DOI,文献DOI怎么找? 1361036
科研通“疑难数据库(出版商)”最低求助积分说明 643421
邀请新用户注册赠送积分活动 615692