Automated video analysis of emotion and dystonia in epileptic seizures

肌张力障碍 癫痫 心理学 面部表情 听力学 物理医学与康复
作者
Jen-Cheng Hou,Monique Thonnat,Fabrice Bartolomei,Aileen McGonigal
出处
期刊:Epilepsy Research [Elsevier]
卷期号:: 106953-106953
标识
DOI:10.1016/j.eplepsyres.2022.106953
摘要

To investigate the accuracy of deep learning methods applied to seizure video data, in discriminating individual semiologic features of dystonia and emotion in epileptic seizures. A dataset of epileptic seizure videos was used from patients explored with stereo-EEG for focal pharmacoresistant epilepsy. All patients had hyperkinetic (HKN) seizures according to ILAE definition. Presence or absence of (1) dystonia and (2) emotional features in each seizure was documented by an experienced clinician. A deep learning multi-stream model with appearance and skeletal keypoints, face and body information, using graph convolutional neural networks, was used to test discrimination of dystonia and emotion. Classification accuracy was assessed using a leave-one-subject-out analysis. We studied 38 HKN seizure videos in 19 patients. By visual analysis based on ILAE criteria, 9/19 patients were considered to have dystonia and 9/19 patients were considered to have emotional signs. Two patients had both dystonia and emotional signs. Applying the deep learning multistream model, spatiotemporal features of facial appearance showed best accuracy for emotion detection (F1 score 0.84), while skeletal keypoint detection performed best for dystonia (F1 score 0.83). Here, we investigated deep learning of video data for analyzing individual semiologic features of dystonia and emotion in hyperkinetic seizures. Automated classification of individual semiologic features is possible and merits further study. • Deep learning analysis of seizure videos allows automated classification of semiology • Presence of dystonia and/or emotion in hyperkinetic seizures was assessed • Dystonia was best detected by skeletal keypoints, and emotional signs by facial appearance • Spatiotemporal facial features were superior to facial keypoints for emotion detection • Skeletal keypoints topology was superior to spatiotemporal model for dystonia detection
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
满意的梦竹完成签到,获得积分10
2秒前
IYHA完成签到,获得积分10
4秒前
wcy发布了新的文献求助10
4秒前
5秒前
薛婧旌发布了新的文献求助10
5秒前
u6e0c完成签到,获得积分10
6秒前
7秒前
9秒前
10秒前
wcy完成签到,获得积分10
11秒前
KaMoria发布了新的文献求助40
12秒前
14秒前
An.发布了新的文献求助10
15秒前
zcj完成签到,获得积分10
17秒前
赘婿应助满意的梦竹采纳,获得10
18秒前
汉堡包应助小暮漓采纳,获得10
19秒前
LINGXING完成签到,获得积分10
21秒前
23秒前
An.完成签到,获得积分10
23秒前
23秒前
卡荼完成签到,获得积分20
23秒前
薛婧旌完成签到,获得积分10
24秒前
24秒前
26秒前
ding应助hhh采纳,获得10
27秒前
28秒前
SUS发布了新的文献求助10
28秒前
恍恍惚惚完成签到,获得积分10
30秒前
天天快乐应助瘦瘦采纳,获得10
30秒前
31秒前
31秒前
32秒前
缥缈的豌豆完成签到 ,获得积分10
33秒前
fairy发布了新的文献求助30
34秒前
小于发布了新的文献求助10
35秒前
36秒前
彩色小凡发布了新的文献求助10
36秒前
40秒前
散逸层梦游应助fairy采纳,获得30
40秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313702
求助须知:如何正确求助?哪些是违规求助? 2945997
关于积分的说明 8527826
捐赠科研通 2621588
什么是DOI,文献DOI怎么找? 1433925
科研通“疑难数据库(出版商)”最低求助积分说明 665098
邀请新用户注册赠送积分活动 650648