已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A weight-loss model based on baseline microbiota and genetic scores for selection of dietary treatments in overweight and obese population

减肥 瘤胃球菌 肠道菌群 人口 超重 医学 生物 肥胖 内科学 免疫学 环境卫生
作者
Amanda Cuevas-Sierra,Fermı́n I. Milagro,Elizabeth Guruceaga,Marta Cuervo,Leticia Goñi,Marta García‐Granero,J. Alfredo Martínéz,José Ignacio Riezu‐Boj
出处
期刊:Clinical Nutrition [Elsevier]
卷期号:41 (8): 1712-1723 被引量:16
标识
DOI:10.1016/j.clnu.2022.06.008
摘要

The response to weight loss depends on the interindividual variability of determinants such as gut microbiota and genetics. The aim of this investigation was to develop an integrative model using microbiota and genetic information to prescribe the most suitable diet for a successful weight loss in individuals with excess of body weight.A total of 190 Spanish overweight and obese participants were randomly assigned to two hypocaloric diets for 4 months: 61 women and 29 men followed a moderately high protein (MHP) diet, and 72 women and 28 men followed a low fat (LF) diet. Baseline fecal DNA was sequenced and used for the construction of four microbiota subscores associated with the percentage of BMI loss for each diet (MHP and LF) and for each sex. Bootstrapping techniques and multiple linear regression models were used for the selection of families, genera and species included in the subscores. Finally, two total microbiota scores were generated for each sex. Two genetic subscores previously reported to weight loss were used to generate a total genetic score. In an attempt to personalize the weight loss prescription, several linear mixed models that included interaction with diet between microbiota scores and genetic scores for both, men and women, were studied.The microbiota subscore for the women who followed the MHP-diet included Coprococcus, Dorea, Flavonifractor, Ruminococcus albus and Clostridium bolteaea. For LF-diet women, Cytophagaceae, Catabacteriaceae, Flammeovirgaceae, Rhodobacteriaceae, Clostridium-x1vb, Bacteriodes nordiiay, Alistipes senegalensis, Blautia wexlerae and Psedoflavonifractor phocaeensis. For MHP-diet men, Cytophagaceae, Acidaminococcaceae, Marinilabiliaceae, Bacteroidaceae, Fusicatenibacter, Odoribacter and Ruminococcus faecis; and for LF-men, Porphyromanadaceae, Intestinimonas, Bacteroides finegoldii and Clostridium bartlettii. The mixed models with microbiota scores facilitated the selection of diet in 72% of women and in 84% of men. The model including genetic information allows to select the type of diet in 84% and 73%, respectively.Decision algorithm models can help to select the most adequate type of weight loss diet according to microbiota and genetic information.This trial was registered at www.gov as NCT02737267 (https://clinicaltrials.gov/ct2/show/NCT02737267?term=NCT02737267&cond=obekit&draw=2&rank=1).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风趣安雁发布了新的文献求助30
刚刚
jy应助文件撤销了驳回
1秒前
Ava应助直率三问采纳,获得10
2秒前
Jing完成签到,获得积分10
2秒前
lehha完成签到,获得积分10
2秒前
5秒前
limuzi827完成签到 ,获得积分10
7秒前
罗先生完成签到,获得积分10
8秒前
胖豆发布了新的文献求助10
10秒前
NAWAZ发布了新的文献求助10
12秒前
Jasper应助科研通管家采纳,获得10
12秒前
嗯嗯应助科研通管家采纳,获得10
12秒前
熬夜波比应助科研通管家采纳,获得10
12秒前
上官若男应助科研通管家采纳,获得10
12秒前
13秒前
嗯嗯应助科研通管家采纳,获得10
13秒前
13秒前
脑洞疼应助科研通管家采纳,获得10
13秒前
充电宝应助科研通管家采纳,获得30
13秒前
13秒前
嗯嗯应助科研通管家采纳,获得10
13秒前
搜集达人应助科研通管家采纳,获得10
13秒前
13秒前
桐桐应助科研通管家采纳,获得10
13秒前
嗯嗯应助科研通管家采纳,获得10
13秒前
开朗梦菡应助科研通管家采纳,获得10
13秒前
偷喝气泡水完成签到 ,获得积分20
15秒前
FloraMu发布了新的文献求助10
16秒前
齐天大圣发布了新的文献求助10
17秒前
want完成签到 ,获得积分10
17秒前
17秒前
18秒前
希望天下0贩的0应助10采纳,获得10
20秒前
22秒前
24秒前
wek发布了新的文献求助10
24秒前
24秒前
张f完成签到,获得积分10
25秒前
斯文败类应助杨德帅采纳,获得10
25秒前
ertredffg完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5680664
求助须知:如何正确求助?哪些是违规求助? 5000848
关于积分的说明 15173759
捐赠科研通 4840497
什么是DOI,文献DOI怎么找? 2594151
邀请新用户注册赠送积分活动 1547214
关于科研通互助平台的介绍 1505173