A weight-loss model based on baseline microbiota and genetic scores for selection of dietary treatments in overweight and obese population

减肥 瘤胃球菌 肠道菌群 人口 超重 医学 生物 肥胖 内科学 免疫学 环境卫生
作者
Amanda Cuevas-Sierra,Fermı́n I. Milagro,Elizabeth Guruceaga,Marta Cuervo,Leticia Goñi,Marta García‐Granero,J. Alfredo Martínéz,José Ignacio Riezu‐Boj
出处
期刊:Clinical Nutrition [Elsevier BV]
卷期号:41 (8): 1712-1723 被引量:16
标识
DOI:10.1016/j.clnu.2022.06.008
摘要

The response to weight loss depends on the interindividual variability of determinants such as gut microbiota and genetics. The aim of this investigation was to develop an integrative model using microbiota and genetic information to prescribe the most suitable diet for a successful weight loss in individuals with excess of body weight.A total of 190 Spanish overweight and obese participants were randomly assigned to two hypocaloric diets for 4 months: 61 women and 29 men followed a moderately high protein (MHP) diet, and 72 women and 28 men followed a low fat (LF) diet. Baseline fecal DNA was sequenced and used for the construction of four microbiota subscores associated with the percentage of BMI loss for each diet (MHP and LF) and for each sex. Bootstrapping techniques and multiple linear regression models were used for the selection of families, genera and species included in the subscores. Finally, two total microbiota scores were generated for each sex. Two genetic subscores previously reported to weight loss were used to generate a total genetic score. In an attempt to personalize the weight loss prescription, several linear mixed models that included interaction with diet between microbiota scores and genetic scores for both, men and women, were studied.The microbiota subscore for the women who followed the MHP-diet included Coprococcus, Dorea, Flavonifractor, Ruminococcus albus and Clostridium bolteaea. For LF-diet women, Cytophagaceae, Catabacteriaceae, Flammeovirgaceae, Rhodobacteriaceae, Clostridium-x1vb, Bacteriodes nordiiay, Alistipes senegalensis, Blautia wexlerae and Psedoflavonifractor phocaeensis. For MHP-diet men, Cytophagaceae, Acidaminococcaceae, Marinilabiliaceae, Bacteroidaceae, Fusicatenibacter, Odoribacter and Ruminococcus faecis; and for LF-men, Porphyromanadaceae, Intestinimonas, Bacteroides finegoldii and Clostridium bartlettii. The mixed models with microbiota scores facilitated the selection of diet in 72% of women and in 84% of men. The model including genetic information allows to select the type of diet in 84% and 73%, respectively.Decision algorithm models can help to select the most adequate type of weight loss diet according to microbiota and genetic information.This trial was registered at www.gov as NCT02737267 (https://clinicaltrials.gov/ct2/show/NCT02737267?term=NCT02737267&cond=obekit&draw=2&rank=1).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
有结果应助科研通管家采纳,获得30
刚刚
刚刚
刚刚
刚刚
刚刚
刚刚
欧派果奶发布了新的文献求助10
刚刚
刚刚
小慧儿完成签到 ,获得积分10
1秒前
kirito发布了新的文献求助10
2秒前
2秒前
科研通AI5应助苗英采纳,获得30
4秒前
认真科研完成签到,获得积分10
4秒前
王子娇完成签到 ,获得积分10
5秒前
下小雨完成签到,获得积分10
5秒前
嘟嘟嘟嘟发布了新的文献求助10
5秒前
5秒前
7秒前
TT发布了新的文献求助10
7秒前
8秒前
跳跃尔容发布了新的文献求助10
8秒前
Dipsy完成签到,获得积分10
10秒前
fionadong完成签到,获得积分10
10秒前
10秒前
鲨野博士发布了新的文献求助10
11秒前
NexusExplorer应助kkkd采纳,获得10
11秒前
情怀应助yanyan采纳,获得10
11秒前
TT完成签到,获得积分10
12秒前
蓝胖胖蓝完成签到,获得积分0
13秒前
14秒前
binbin完成签到,获得积分10
15秒前
打打应助鲜艳的熊猫采纳,获得10
16秒前
黑色的白鲸完成签到,获得积分10
16秒前
曲曲完成签到,获得积分10
16秒前
kirito完成签到,获得积分10
16秒前
Akim应助kuku采纳,获得10
16秒前
16秒前
dudu完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助10
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4921214
求助须知:如何正确求助?哪些是违规求助? 4192475
关于积分的说明 13021901
捐赠科研通 3963791
什么是DOI,文献DOI怎么找? 2172608
邀请新用户注册赠送积分活动 1190331
关于科研通互助平台的介绍 1099525