A weight-loss model based on baseline microbiota and genetic scores for selection of dietary treatments in overweight and obese population

减肥 瘤胃球菌 肠道菌群 人口 超重 医学 生物 肥胖 内科学 免疫学 环境卫生
作者
Amanda Cuevas-Sierra,Fermı́n I. Milagro,Elizabeth Guruceaga,Marta Cuervo,Leticia Goñi,Marta García‐Granero,J. Alfredo Martínéz,José Ignacio Riezu‐Boj
出处
期刊:Clinical Nutrition [Elsevier]
卷期号:41 (8): 1712-1723 被引量:16
标识
DOI:10.1016/j.clnu.2022.06.008
摘要

The response to weight loss depends on the interindividual variability of determinants such as gut microbiota and genetics. The aim of this investigation was to develop an integrative model using microbiota and genetic information to prescribe the most suitable diet for a successful weight loss in individuals with excess of body weight.A total of 190 Spanish overweight and obese participants were randomly assigned to two hypocaloric diets for 4 months: 61 women and 29 men followed a moderately high protein (MHP) diet, and 72 women and 28 men followed a low fat (LF) diet. Baseline fecal DNA was sequenced and used for the construction of four microbiota subscores associated with the percentage of BMI loss for each diet (MHP and LF) and for each sex. Bootstrapping techniques and multiple linear regression models were used for the selection of families, genera and species included in the subscores. Finally, two total microbiota scores were generated for each sex. Two genetic subscores previously reported to weight loss were used to generate a total genetic score. In an attempt to personalize the weight loss prescription, several linear mixed models that included interaction with diet between microbiota scores and genetic scores for both, men and women, were studied.The microbiota subscore for the women who followed the MHP-diet included Coprococcus, Dorea, Flavonifractor, Ruminococcus albus and Clostridium bolteaea. For LF-diet women, Cytophagaceae, Catabacteriaceae, Flammeovirgaceae, Rhodobacteriaceae, Clostridium-x1vb, Bacteriodes nordiiay, Alistipes senegalensis, Blautia wexlerae and Psedoflavonifractor phocaeensis. For MHP-diet men, Cytophagaceae, Acidaminococcaceae, Marinilabiliaceae, Bacteroidaceae, Fusicatenibacter, Odoribacter and Ruminococcus faecis; and for LF-men, Porphyromanadaceae, Intestinimonas, Bacteroides finegoldii and Clostridium bartlettii. The mixed models with microbiota scores facilitated the selection of diet in 72% of women and in 84% of men. The model including genetic information allows to select the type of diet in 84% and 73%, respectively.Decision algorithm models can help to select the most adequate type of weight loss diet according to microbiota and genetic information.This trial was registered at www.gov as NCT02737267 (https://clinicaltrials.gov/ct2/show/NCT02737267?term=NCT02737267&cond=obekit&draw=2&rank=1).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助武明进采纳,获得10
刚刚
木丁发布了新的文献求助10
1秒前
123发布了新的文献求助20
2秒前
未央完成签到,获得积分10
2秒前
2秒前
荷月初六发布了新的文献求助20
3秒前
小屏呀完成签到,获得积分20
3秒前
可靠代丝发布了新的文献求助10
4秒前
浮游应助qin采纳,获得10
4秒前
小小aa16完成签到,获得积分0
4秒前
4秒前
4秒前
5秒前
儒雅厉发布了新的文献求助100
5秒前
量子星尘发布了新的文献求助10
5秒前
十一发布了新的文献求助40
5秒前
平常的如凡完成签到,获得积分10
5秒前
英姑应助LA采纳,获得10
5秒前
拿抓抓拿关注了科研通微信公众号
6秒前
7秒前
christy完成签到,获得积分10
7秒前
7秒前
头哥应助加菲丰丰采纳,获得50
7秒前
123发布了新的文献求助10
8秒前
caimeng完成签到,获得积分10
8秒前
8秒前
赘婿应助Rocky_Qi采纳,获得10
9秒前
巴拉巴拉不完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
10秒前
摆烂昊发布了新的文献求助20
10秒前
荷月初六发布了新的文献求助10
10秒前
从容的子轩完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
忧郁的猪鼻子关注了科研通微信公众号
12秒前
科研通AI6应助11采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5506056
求助须知:如何正确求助?哪些是违规求助? 4601542
关于积分的说明 14477374
捐赠科研通 4535544
什么是DOI,文献DOI怎么找? 2485440
邀请新用户注册赠送积分活动 1468399
关于科研通互助平台的介绍 1440887