A weight-loss model based on baseline microbiota and genetic scores for selection of dietary treatments in overweight and obese population

减肥 瘤胃球菌 肠道菌群 人口 超重 医学 生物 肥胖 内科学 免疫学 环境卫生
作者
Amanda Cuevas-Sierra,Fermı́n I. Milagro,Elizabeth Guruceaga,Marta Cuervo,Leticia Goñi,Marta García‐Granero,J. Alfredo Martínéz,José Ignacio Riezu‐Boj
出处
期刊:Clinical Nutrition [Elsevier]
卷期号:41 (8): 1712-1723 被引量:16
标识
DOI:10.1016/j.clnu.2022.06.008
摘要

The response to weight loss depends on the interindividual variability of determinants such as gut microbiota and genetics. The aim of this investigation was to develop an integrative model using microbiota and genetic information to prescribe the most suitable diet for a successful weight loss in individuals with excess of body weight.A total of 190 Spanish overweight and obese participants were randomly assigned to two hypocaloric diets for 4 months: 61 women and 29 men followed a moderately high protein (MHP) diet, and 72 women and 28 men followed a low fat (LF) diet. Baseline fecal DNA was sequenced and used for the construction of four microbiota subscores associated with the percentage of BMI loss for each diet (MHP and LF) and for each sex. Bootstrapping techniques and multiple linear regression models were used for the selection of families, genera and species included in the subscores. Finally, two total microbiota scores were generated for each sex. Two genetic subscores previously reported to weight loss were used to generate a total genetic score. In an attempt to personalize the weight loss prescription, several linear mixed models that included interaction with diet between microbiota scores and genetic scores for both, men and women, were studied.The microbiota subscore for the women who followed the MHP-diet included Coprococcus, Dorea, Flavonifractor, Ruminococcus albus and Clostridium bolteaea. For LF-diet women, Cytophagaceae, Catabacteriaceae, Flammeovirgaceae, Rhodobacteriaceae, Clostridium-x1vb, Bacteriodes nordiiay, Alistipes senegalensis, Blautia wexlerae and Psedoflavonifractor phocaeensis. For MHP-diet men, Cytophagaceae, Acidaminococcaceae, Marinilabiliaceae, Bacteroidaceae, Fusicatenibacter, Odoribacter and Ruminococcus faecis; and for LF-men, Porphyromanadaceae, Intestinimonas, Bacteroides finegoldii and Clostridium bartlettii. The mixed models with microbiota scores facilitated the selection of diet in 72% of women and in 84% of men. The model including genetic information allows to select the type of diet in 84% and 73%, respectively.Decision algorithm models can help to select the most adequate type of weight loss diet according to microbiota and genetic information.This trial was registered at www.gov as NCT02737267 (https://clinicaltrials.gov/ct2/show/NCT02737267?term=NCT02737267&cond=obekit&draw=2&rank=1).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
醉眠完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
justsoso完成签到,获得积分0
5秒前
zengyangyu发布了新的文献求助50
5秒前
6秒前
JamesPei应助Hathaway采纳,获得30
7秒前
lulu发布了新的文献求助10
7秒前
10秒前
瞿霞发布了新的文献求助10
11秒前
13秒前
传奇3应助Zhoujie采纳,获得10
14秒前
kellogg发布了新的文献求助10
14秒前
Keira_Chang发布了新的文献求助20
15秒前
Lucas应助嘿嘿嘿采纳,获得10
15秒前
情怀应助瞿霞采纳,获得10
16秒前
feljqlik完成签到,获得积分10
20秒前
英俊的铭应助wyt1239012采纳,获得10
21秒前
欣喜的薯片完成签到 ,获得积分10
22秒前
量子星尘发布了新的文献求助10
23秒前
23秒前
QiLe发布了新的文献求助20
24秒前
25秒前
蛋蛋完成签到 ,获得积分10
26秒前
111关注了科研通微信公众号
26秒前
三一完成签到,获得积分10
26秒前
27秒前
每㐬山风发布了新的文献求助10
27秒前
4114完成签到,获得积分10
28秒前
28秒前
嘿嘿嘿发布了新的文献求助10
32秒前
自觉雁玉发布了新的文献求助10
32秒前
32秒前
34秒前
34秒前
innocent完成签到 ,获得积分10
35秒前
小白鞋完成签到 ,获得积分10
35秒前
小二郎应助小涛哥采纳,获得10
36秒前
华仔应助饱满的问丝采纳,获得10
37秒前
yegechuanqi发布了新的文献求助10
37秒前
xiaoxuey发布了新的文献求助10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425164
求助须知:如何正确求助?哪些是违规求助? 4539269
关于积分的说明 14166518
捐赠科研通 4456411
什么是DOI,文献DOI怎么找? 2444204
邀请新用户注册赠送积分活动 1435224
关于科研通互助平台的介绍 1412564