A weight-loss model based on baseline microbiota and genetic scores for selection of dietary treatments in overweight and obese population

减肥 瘤胃球菌 肠道菌群 人口 超重 医学 生物 肥胖 内科学 免疫学 环境卫生
作者
Amanda Cuevas-Sierra,Fermı́n I. Milagro,Elizabeth Guruceaga,Marta Cuervo,Leticia Goñi,Marta García‐Granero,J. Alfredo Martínéz,José Ignacio Riezu‐Boj
出处
期刊:Clinical Nutrition [Elsevier]
卷期号:41 (8): 1712-1723 被引量:16
标识
DOI:10.1016/j.clnu.2022.06.008
摘要

The response to weight loss depends on the interindividual variability of determinants such as gut microbiota and genetics. The aim of this investigation was to develop an integrative model using microbiota and genetic information to prescribe the most suitable diet for a successful weight loss in individuals with excess of body weight.A total of 190 Spanish overweight and obese participants were randomly assigned to two hypocaloric diets for 4 months: 61 women and 29 men followed a moderately high protein (MHP) diet, and 72 women and 28 men followed a low fat (LF) diet. Baseline fecal DNA was sequenced and used for the construction of four microbiota subscores associated with the percentage of BMI loss for each diet (MHP and LF) and for each sex. Bootstrapping techniques and multiple linear regression models were used for the selection of families, genera and species included in the subscores. Finally, two total microbiota scores were generated for each sex. Two genetic subscores previously reported to weight loss were used to generate a total genetic score. In an attempt to personalize the weight loss prescription, several linear mixed models that included interaction with diet between microbiota scores and genetic scores for both, men and women, were studied.The microbiota subscore for the women who followed the MHP-diet included Coprococcus, Dorea, Flavonifractor, Ruminococcus albus and Clostridium bolteaea. For LF-diet women, Cytophagaceae, Catabacteriaceae, Flammeovirgaceae, Rhodobacteriaceae, Clostridium-x1vb, Bacteriodes nordiiay, Alistipes senegalensis, Blautia wexlerae and Psedoflavonifractor phocaeensis. For MHP-diet men, Cytophagaceae, Acidaminococcaceae, Marinilabiliaceae, Bacteroidaceae, Fusicatenibacter, Odoribacter and Ruminococcus faecis; and for LF-men, Porphyromanadaceae, Intestinimonas, Bacteroides finegoldii and Clostridium bartlettii. The mixed models with microbiota scores facilitated the selection of diet in 72% of women and in 84% of men. The model including genetic information allows to select the type of diet in 84% and 73%, respectively.Decision algorithm models can help to select the most adequate type of weight loss diet according to microbiota and genetic information.This trial was registered at www.gov as NCT02737267 (https://clinicaltrials.gov/ct2/show/NCT02737267?term=NCT02737267&cond=obekit&draw=2&rank=1).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡如水发布了新的文献求助10
1秒前
will发布了新的文献求助10
1秒前
赘婿应助冷傲迎梦采纳,获得10
1秒前
2秒前
YY发布了新的文献求助10
2秒前
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
香蕉觅云应助琳666采纳,获得10
4秒前
zl12应助幽默尔蓝采纳,获得10
4秒前
zwy发布了新的文献求助10
4秒前
郭奕沛完成签到,获得积分10
4秒前
科研通AI2S应助震震采纳,获得10
6秒前
xs发布了新的文献求助10
7秒前
7秒前
芝士酱完成签到,获得积分10
8秒前
张11发布了新的文献求助10
8秒前
9秒前
邓佳鑫Alan应助ZZQ采纳,获得10
10秒前
11秒前
ZhouXB完成签到,获得积分10
12秒前
大宝剑2号完成签到 ,获得积分10
13秒前
李健应助锅锅采纳,获得10
13秒前
14秒前
14秒前
14秒前
小猪发布了新的文献求助10
14秒前
呆萌的早晨完成签到,获得积分10
14秒前
科研通AI6应助超级佳倍采纳,获得10
15秒前
17秒前
丘比特应助文官采纳,获得10
17秒前
小小应助will采纳,获得10
17秒前
希望天下0贩的0应助ss采纳,获得10
17秒前
Dr_Zhang完成签到,获得积分10
18秒前
含蓄的海完成签到,获得积分10
18秒前
仁爱的梦曼完成签到 ,获得积分10
18秒前
风趣烤鸡发布了新的文献求助10
19秒前
haizz完成签到,获得积分10
20秒前
Orange应助yang采纳,获得10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637646
求助须知:如何正确求助?哪些是违规求助? 4743795
关于积分的说明 14999969
捐赠科研通 4795812
什么是DOI,文献DOI怎么找? 2562208
邀请新用户注册赠送积分活动 1521661
关于科研通互助平台的介绍 1481646